Biopolimer lateks karet alam berpotensi digunakan sebagai bahan aditif dalam pembuatan aspal modifikasi polimer atau aspal karet. Penelitian ini bertujuan untuk mempelajari pengaruh berbagai jenis dan dosis lateks karet alam terhadap sifat fisika aspal karet. Lateks karet alam yang digunakan meliputi lateks karet alam pekat murni, lateks karet alam kationik, dan lateks karet alam yang telah dipravulkanisasi selama 1 dan 4 jam. Aspal sebagai bahan utama dipilih jenis aspal pen 60. Penilaian mutu aspal karet didasarkan pada hasil pengujian penetrasi, titik lembek, daktilitas, indeks penetrasi, uji TFOT, dan elastic recovery. Pencampuran lateks karet alam dalam aspal pen 60 dilakukan pada suhu 140 – 150oC. Dosis penambahan lateks karet alam divariasikan sebesar 3, 5 dan 7% terhadap berat aspal pen 60. Berdasarkan hasil pengujian diperoleh bahwa lateks kationik (L2) dan lateks pravulkanisasi 4 jam (L3) menghasilkan aspal karet yang lebih baik daripada aspal karet dengan aditif lateks pekat biasa (L1) dan lateks pekat pravulkanisasi 1 jam (L4). Lateks L2 menghasilkan aspal karet dengan titik lembek yang lebih tinggi daripada lateks L3 namun memiliki elastic recovery dan stabilitas penyimpanan yang lebih rendah daripada lateks L3 karena lateks L2 tidak melalui proses pravulkanisasi. Adanya ikatan silang pada lateks pravulkanisasi L3 membuat karet pada campuran aspal karet memiliki elastisitas yang lebih tinggi dan stabilitas penyimpanan yang lebih baik.
Karet alam berpotensi digunakan sebagai bahan aditif dalam pembuatan aspal modifikasi polimer. Dalam penelitian ini telah diujicobakan penambahan kompon karet alam berbasis karet SIR 20 pada konsentrasi 3%, 5%, 7% dan 9% dalam aspal penetrasi 60 pada suhu 150oC sebagai upaya dalam pembuatan aspal karet. Sedangkan kecepatan pengaduk pada mesin pencampurkan divariasikan pada 1000 rpm, 2000 rpm, 4000 rpm, 6000 rpm, 8000 rpm, dan 10000 rpm. Kompon karet SIR diformulasikan berdasarkan sistem vulkanisasi yaitu konvensional (KP1) dan semi effisien (KP2). Penilaian mutu aspal karet ditentukan berdasarkan pengujian sifat fisik aspal karet tersebut. Berdasarkan hasil pengamatan diketahui bahwa kecepatan pengaduk pada mesin pencampur aspal karet yang teroptimal sebesar 6000 rpm. Selanjutnya menurut hasil karakterisasi sifat fisik aspal karet diperoleh bahwa kompon karet SIR 20 yang dihasilkan dari sistem vulkanisasi semi effisien (KP2) dengan dosis 5-7% dapat membentuk aspal karet dengan kualitas terbaik ditunjukkan oleh penurunan penetrasi yang diikuti dengan peningkatan nilai titik lembek, indeks penetrasi dan elastic recovery serta sifat kestabilan aspal karet selama penyimpanan dan akibat pengaruh pemanasan berulang yang relatif baik.
Tailing waste from gold mining in Papua, Indonesia, is a severe problem for the environment. Tailing as Hazardous and Toxic Substances, the deposits so massive. On the other hand, the availability of natural aggregates for road pavement continues to run low. The problems can be solved by utilizing tailing as a road base layer with massively, fulfill specification, and save. The purpose of this research is how to utilize tailing as a road base layer. The research methods used are experiment laboratory method by physical, chemical, TCLP, and mechanical strength test. The physical analysis shows that the size of the tailing is loose and non-cohesive, so it requires binding material to increase bearing capacity. The TCLP test showed that the level of toxic material in tailing was fulfilled the threshold. The stabilization analysis of tailing with 20% clay soil produces CBR 17,3% and can only be utilized as embankment. Stabilization with 13,35% cement fulfills the target UCS 24 kg/cm2 to be used as a road base layer. Marshall test result by 60% tailing and 7% asphalt meet specifications to be asphalt road base layer.
Technology of rubberized asphalt is significantly increased for the last five years among three highest natural rubber producing countries. Fresh natural rubber which is used as asphalt cement additive, consists of pre‐vulcanized natural rubber latex (NRL), solid rubber compound, and master‐batch. Selection of fresh natural rubber types are strongly influenced by process‐ability, while dosage of fresh natural rubber determine rubberized asphalt properties. Mixing of pre‐vulcanized NRL with hot melted asphalt is run at stirred mixer, while addition of solid rubber compound and master‐batch into asphalt is conducted by using high shear mixer at 150 °C. Observation during rubberized asphalt production shows that mixing of solid rubber based asphalt additive was longer (12 h) than pre‐vulcanized NRL (4 h). Longer mixing time due to solid rubber tend to swell in the hot melted asphalt since there is polarity difference between rubber particles and asphalt. Analysis of rubberized asphalt physical property shows that pre‐vulcanized NRL produces highest elastic recovery value (40–70%) compared to rubberized asphalt based on solid rubber (25.8%). High elastic recovery indicates better resistance of rubberized asphalt against high traffic load and harsh environment. It can be concluded that during field trial test, usage of pre‐vulcanized NRL is more beneficial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.