An alternative approach to fully automatic speckle-displacement measurement is described. Two speckle patterns of a specimen, one before and one after deformation, are captured by a CCD camera and registered by a frame grabber. Two series of small subimages are obtained by segmenting the two speckle patterns. The corresponding subimage pairs extracted from both series are analyzed pointwise. The interrogation of each subimage pair involves a two-step fast-Fourier transform. While the first-step fast-Fourier transform achieves a complex spectrum characterized by the local displacement information, the second-step one generates a signal peak in the second spectral domain that resolves the local displacement vector. A rough estimate of the displacement vector is achieved by detecting the maximum pixel of the discrete spectrum. A more accurate determination is attained by a subpixel-maximum determination through a biparabolic fitting near the signal peak. The u- and v-displacement fields are deduced by analyzing all subimage pairs. A large rigid-body displacement can be overcome by introducing an artificial rigid shift of the two speckle patterns toward each other before the numerical process. The technique retains all the advantages of optical speckle photography and provides an extended range of measurement. Dynamic incremental deformations can be inspected by registering more speckle patterns at many consecutive deformation stages by using a high-speed CCD camera. The system was applied successfully to the study of crack-tip deformation fields.
A new phase-unwrapping algorithm is described that uses two phase images with different precision in the unwrapping; this technique can produce an approximately correct unwrapping in the presence of discontinuities. We introduce it into the measurement of a three-dimensional object shape and also present the experimental results.
The recent development of metasurfaces has motivated their potential use for improving the performance of wireless communication networks by manipulating the propagation environment through nearly-passive sub-wavelength scattering elements arranged on a surface. However, most studies of this technology focus on reflective metasurfaces, i.e., the surface reflects the incident signals towards receivers located on the same side of the transmitter, which restricts the coverage to one side of the surface. In this article, we introduce the concept of intelligent omni-surface (IOS), which is able to serve mobile users on both sides of the surface to achieve full-dimensional communications by jointly engineering its reflective and refractive properties. The working principle of the IOS is introduced and a novel hybrid beamforming scheme is proposed for IOS-based wireless communications. Moreover, we present a prototype of IOS-based wireless communications and report experimental results. Furthermore, potential applications of the IOS to wireless communications together with relevant research challenges are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.