Little is known of the dynamics of centromeric DNA in polyploid plants. We report the sequences of two centromere-associated bacterial artificial chromosome clones from a Triticum boeoticum library. Both autonomous and non-autonomous wheat centromeric retrotransposons (CRWs) were identified, both being closely associated with the centromeres of wheat. Fiber-fluorescence in situ hybridization and chromatin immunoprecipitation analysis showed that wheat centromeric retrotransposons (CRWs) represent a dominant component of the wheat centromere and are associated with centromere function. CRW copy number showed variation among different genomes: the D genome chromosomes contained fewer copies than either the A or B genome chromosomes. The frequency of lengthy continuous CRW arrays was higher than that in either rice or maize. The dynamics of CRWs and other retrotransposons at centromeric and pericentromeric regions during diploid speciation and polyploidization of wheat and its related species are discussed.
Sucrose synthase catalyzes the reaction sucrose + UDP → UDP-glucose + fructose, the first step in the conversion of sucrose to starch in endosperm. Previous studies identified two tissue-specific, yet functionally redundant, sucrose synthase (SUS) genes, Sus1 and Sus2. In the present study, the wheat Sus2 orthologous gene (TaSus2) series was isolated and mapped on chromosomes 2A, 2B, and 2D. Based on sequencing in 61 wheat accessions, three single-nucleotide polymorphisms (SNPs) were detected in TaSus2-2B. These formed two haplotypes (Hap-H and Hap-L), but no diversity was found in either TaSus2-2A or TaSus2-2D. Based on the sequences of the two haplotypes, we developed a co-dominant marker, TaSus2-2B ( tgw ), which amplified 423 or 381-bp fragments in different wheat accessions. TaSus2-2B ( tgw ) was located between markers Xbarc102.2 and Xbarc91 on chromosome 2BS in a RIL population from Xiaoyan 54 × Jing 411. Association analysis suggested that the two haplotypes were significantly associated with 1,000 grain weight (TGW) in 89 modern wheat varieties in the Chinese mini-core collection. Mean TGW difference between the two haplotypes over three cropping seasons was 4.26 g (varying from 3.71 to 4.94 g). Comparative genomics analysis detected major kernel weight QTLs not only in the chromosome region containing TaSus2-2B (tgw), but also in the collinear regions of TaSus2 on rice chromosome 7 and maize chromosome 9. The preferred Hap-H haplotype for high TGW underwent very strong positive selection in Chinese wheat breeding, but not in Europe. The geographic distribution of Hap-H was perhaps determined by both latitude and the intensity of selection in wheat breeding.
Chinese wheat mini core collection (262 accessions) was genotyped at 531 microsatellite loci representing a mean marker density of 5.1 cM. One-thousand-kernel weights (TKW) of lines were measured in five trials (three environments in four growing seasons). Structure analysis based on 42 unlinked SSR loci indicated that the materials formed two sub-populations, viz., landraces and modern varieties. A large difference in TKW (7.08 g, P<0.001) was found between the two sub-groups. Therefore, TKW is a major yield component that was improved in the past 6 decades; it increased from a mean 31.5 g in the 1940s to 44.64 g in the 2000s, representing a 2.19 g increase in each decade. Analyses based on a mixed linear model (MLM), population structure (Q) and relative kinship (K) revealed 22 SSR loci that were significantly associated with mean TKW (MTKW) of the five trials estimated by the best linear unbiased predictor (BLUP) method. They were mainly distributed on chromosomes of homoeologous groups 1, 2, 3, 5 and 7. Six loci, cfa2234-3A, gwm156-3B, barc56-5A, gwm234-5B, wmc17-7A and cfa2257-7A individually explained more than 11.84% of the total phenotypic variation. Favored alleles for breeding at the 22 loci were inferred according to their estimated effects on MTKW based on mean difference of varieties grouped by genotypes. Statistical simulation showed that these favored alleles have additive genetic effects. Frequency changes of alleles at loci associated with TKW are much more dramatic than those at neutral loci between the sub-groups. The numbers of favored alleles in modern varieties indicate there is still considerable genetic potential for their use as markers for genome selection of TKW in wheat breeding. Alleles that can be used globally to increase TKW were inferred according to their distribution by latitude and frequency of changes between landraces and the modern varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.