These results provided new insight into understanding the therapeutic role and mechanism of antibody against persistent viral infection. The E6F6-like mAbs may provide a novel immunotherapeutic agent against human chronic HBV infection.
Rab GTPases, by targeting to specific membrane compartments, play essential roles in membrane trafficking. Lipid droplets (LDs) are dynamic subcellular organelles whose growth is closely linked to obesity and hepatic steatosis. Fsp27 is shown to be required for LD fusion and growth by enriching at LD-LD contact sites. Here, we identify Rab8a as a direct interactor and regulator of Fsp27 in mediating LD fusion in adipocytes. Knockdown of Rab8a in the livers of ob/ob mice results in the accumulation of smaller LDs and lower hepatic lipid levels. Surprisingly, it is the GDP-bound form of Rab8a that exhibits fusion-promoting activity. We further discover AS160 as the GTPase activating protein (GAP) for Rab8a, which forms a ternary complex with Fsp27 and Rab8a to positively regulate LD fusion. MSS4 antagonizes Fsp27-mediated LD fusion activity through Rab8a. Our results have thus revealed a mechanistic signaling circuit controlling LD fusion and fatty liver formation.
SummaryAfrican trypanosomes have a single, membrane-bounded flagellum that is attached to the cell cortex by membrane adhesion proteins and an intracellular flagellum attachment zone (FAZ) complex. The coordinated assembly of flagellum and FAZ, during the cell cycle and the life cycle development, plays a pivotal role in organelle positioning, cell division and cell morphogenesis. To understand how the flagellum and FAZ assembly are coordinated, we examined the domain organization of the flagellum adhesion protein 1 (FLA1), a glycosylated, transmembrane protein essential for flagellum attachment and cell division. By immunoprecipitation of a FLA1-truncation mutant that mislocalized to the flagellum, a novel FLA1-binding protein (FLA1BP) was identified in procyclic Trypanosoma brucei. The interaction between FLA1 on the cell membrane and FLA1BP on the flagellum membrane acts like a molecular zipper, joining flagellum membrane to cell membrane and linking flagellum biogenesis to FAZ elongation. By coordinating flagellum and FAZ assembly during the cell cycle, morphology information is transmitted from the flagellum to the cell body.
CuO as a catalyst has shown promising application prospects in photocatalytic splitting of water into hydrogen (H2). However, the instability of CuO in amine aqueous solution limits the applications of CuO‐based photocatalysts in the photocatalytic H2 evolution. In this work, a novel dodecahedral nitrogen (N)‐doped carbon (C) coated CuO‐In2O3 p–n heterojunction (DNCPH) is designed and synthesized by directly pyrolyzing benzimidazole‐modified dodecahedral Cu/In‐based metal‐organic frameworks, showing long‐term stability in triethanolamine (TEOA) aqueous solution and excellent photocatalytic H2 production efficiency. The improved stability of DNCPH in TEOA solution is ascribed to the alleviation of electron deficiency in CuO by forming the p–n heterojunction and the protection with coated N‐doped C layer. Based on detailed theoretical calculations and experimental studies, it is found that the improved separation efficiency of photogenerated electron/hole pairs and the mediated adsorption behavior (|∆GH*|→0) by coupling N‐doped C layer with CuO‐In2O3 p–n heterojunction lead to the excellent photocatalytic H2 production efficiency of DNCPH. This work provides a feasible strategy for effectively applying CuO‐based photocatalysts in photocatalytic H2 production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.