Attention to therapeutic monoclonal antibodies has been dramatically increasing year by year. Their highly specific targeting of antigens can provide very effective medical treatment, and the advent of moleculartargeting medicine is allowing development of a new generation of therapeutic agents. However, there is one critical obstacle to overcome. Most of the established therapeutic monoclonal antibodies have specificity for the primary structures of target antigens, although all proteins harbor original native intact structures for their own specific functions. Stereo-specific monoclonal antibodies recognizing conformational structures of target antigens may thus offer a markedly more versatile approach. Their application may change the very concepts underlying use of therapeutic antibodies.
To develop efficient applications of monoclonal antibodies for therapeutic purposes, stereospecific recognition of the target antigens is needed. DNA immunization is one of the best methods for sensitizing B lymphocytes that can produce conformation-specific antibodies. Here we verified the class-switching of monoclonal antibodies by DNA immunization followed by cell immunization for the generation of stereospecific monoclonal antibodies against native G protein-coupled receptor (GPCR) using the optimized stereospecific targeting (SST) technique. This technology facilitates the efficient selection of sensitized B lymphocytes through specific interaction with the intact antigen via B-cell receptors (BCRs). We demonstrate that multiple DNA immunizations followed by a single cell immunization in combination with a longer sensitization period (three to four months) are an appropriate sensitizing strategy for the generation of IgG-type stereospecific monoclonal antibodies by class-switching, and the characteristics of antibody production could be transferred to hybridoma cells provided by the optimized SST technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.