This study numerically examines the gravitational effect on the nonlinear dynamics of a buoyant turbulent flame utilizing analytical methods based on complex networks and dynamical systems. A dense (sparse) network structure is formed in the near (far) field in low gravity, as shown by the degree and cluster coefficient in the spatial network. The global dynamics of the vertical flow velocity fluctuations in the intermittent luminous zone is synchronous with that of the temperature fluctuations in low gravity. The synchronized state disappears as the gravity level is increased, leading to a desynchronized state. These behaviors are clearly identified by the symbolic recurrence plots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.