We study the optimal control of battery energy storage under a general "pay-for-performance" setup such as providing frequency regulation and renewable integration. In these settings, batteries need to carefully balance the trade-off between following the instruction signals and their degradation costs in real-time. Existing battery control strategies either do not consider the uncertainty of future signals, or cannot accurately account for battery cycle aging mechanism during operation. In this work, we take a different approach to the optimal battery control problem. Instead of attacking the complexity of battery degradation function or the lack of future information one at a time, we address these two challenges together in a joint fashion. In particular, we present an electrochemically accurate and trackable battery degradation model called the rainflow cyclebased model. We prove the degradation cost is convex. Then we propose an online control policy with a simple threshold structure and show it achieve near-optimal performance with respect to an offline controller that has complete future information. We explicitly characterize the optimality gap and show it is independent to the duration of operation. Simulation results with both synthetic and real regulation traces are conducted to illustrate the theoretical results.
Probabilistic load forecasts provide comprehensive information about future load uncertainties. In recent years, many methodologies and techniques have been proposed for probabilistic load forecasting. Forecast combination, a widely recognized best practice in point forecasting literature, has never been formally adopted to combine probabilistic load forecasts. This paper proposes a constrained quantile regression averaging (CQRA) method to create an improved ensemble from several individual probabilistic forecasts. We formulate the CQRA parameter estimation problem as a linear program with the objective of minimizing the pinball loss, with the constraints that the parameters are nonnegative and summing up to one. We demonstrate the effectiveness of the proposed method using two publicly available datasets, the ISO New England data and Irish smart meter data. Comparing with the best individual probabilistic forecast, the ensemble can reduce the pinball score by 4.39% on average. The proposed ensemble also demonstrates superior performance over nine other benchmark ensembles.
A vital aspect in energy storage planning and operation is to accurately model its operational cost, which mainly comes from the battery cell degradation. Battery degradation can be viewed as a complex material fatigue process that based on stress cycles. Rainflow algorithm is a popular way for cycle identification in material fatigue process, and has been extensively used in battery degradation assessment. However, the rainflow algorithm does not have a closed form, which makes the major difficulty to include it in optimization. In this paper, we prove the rainflow cycle-based cost is convex. Convexity enables the proposed degradation model to be incorporated in different battery optimization problems and guarantees the solution quality. We provide a subgradient algorithm to solve the problem. A case study on PJM regulation market demonstrates the effectiveness of the proposed degradation model in maximizing the battery operating profits as well as extending its lifetime.
Recent advances in Machine Learning (ML) have led to its broad adoption in a series of power system applications, ranging from meter data analytics, renewable/load/price forecasting to grid security assessment. Although these datadriven methods yield state-of-the-art performances in many tasks, the robustness and security of applying such algorithms in modern power grids have not been discussed. In this paper, we attempt to address the issues regarding the security of ML applications in power systems. We first show that most of the current ML algorithms proposed in power systems are vulnerable to adversarial examples, which are maliciously crafted input data. We then adopt and extend a simple yet efficient algorithm for finding subtle perturbations, which could be used for generating adversaries for both categorical (e.g., user load profile classification) and sequential applications (e.g., renewables generation forecasting). Case studies on classification of power quality disturbances and forecast of building loads demonstrate the vulnerabilities of current ML algorithms in power networks under our adversarial designs. These vulnerabilities call for design of robust and secure ML algorithms for real world applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.