Background Mounting evidence has demonstrated the vital importance of tumor-associated macrophages (TAMs) and exosomes in the formation of the premetastatic niche. However, the molecular mechanisms by which tumor-derived exosomal miRNAs interact with TAMs underlying premetastatic niche formation and colorectal cancer liver metastasis (CRLM) remain largely unknown. Methods Transmission electron microscopy and differential ultracentrifugation were used to verify the existence of exosomes. In vivo and in vitro assays were used to identify roles of exosomal miR-934. RNA pull-down assay, dual-luciferase reporter assay, etc. were applied to clarify the mechanism of exosomal miR-934 regulated the crosstalk between CRC cells and M2 macrophages. Results In the present study, we first demonstrated the aberrant overexpression of miR-934 in colorectal cancer (CRC), especially in CRLM, and its correlation with the poor prognosis of CRC patients. Then, we verified that CRC cell-derived exosomal miR-934 induced M2 macrophage polarization by downregulating PTEN expression and activating the PI3K/AKT signaling pathway. Moreover, we revealed that hnRNPA2B1 mediated miR-934 packaging into exosomes of CRC cells and then transferred exosomal miR-934 into macrophages. Interestingly, polarized M2 macrophages could induce premetastatic niche formation and promote CRLM by secreting CXCL13, which activated a CXCL13/CXCR5/NFκB/p65/miR-934 positive feedback loop in CRC cells. Conclusions These findings indicate that tumor-derived exosomal miR-934 can promote CRLM by regulating the crosstalk between CRC cells and TAMs. These findings reveal a tumor and TAM interaction in the metastatic microenvironment mediated by tumor-derived exosomes that affects CRLM. The present study also provides a theoretical basis for secondary liver cancer.
Liver metastasis of colorectal cancer (CRLM) is the most common cause of CRC‐related mortality, and is typically caused by interactions between CRC cells and the tumour microenvironment (TME) in the liver. However, the molecular mechanisms underlying the crosstalk between tumour‐derived extracellular vesicle (EV) miRNAs and the TME in CRLM have yet to be fully elucidated. The present study demonstrated that highly metastatic CRC cells released more miR‐181a‐5p‐rich EVs than cells which exhibit a low metastatic potential, in‐turn promoting CRLM. Additionally, we verified that FUS mediated packaging of miR‐181a‐5p into CRC EVs, which in‐turn persistently activated hepatic stellate cells (HSCs) by targeting SOCS3 and activating the IL6/STAT3 signalling pathway. Activated HSCs could secrete the chemokine CCL20 and further activate a CCL20/CCR6/ERK1/2/Elk‐1/miR‐181a‐5p positive feedback loop, resulting in reprogramming of the TME and the formation of pre‐metastatic niches in CRLM. Clinically, high levels of serum EV containing miR‐181a‐5p was positively correlated with liver metastasis in CRC patients. Taken together, highly metastatic CRC cells‐derived EVs rich in miR‐181a‐5p could activate HSCs and remodel the TME, thereby facilitating liver metastasis in CRC patients. These results provide novel insight into the mechanism underlying liver metastasis in CRC.
We previously discovered that Ras association domain family member 6 (RASSF6) was downregulated and predicted poor prognosis in GC patients. However, the mechanisms of the down regulation of RASSF6 in GC remained unclear. Increasing evidence indicates that dysregulation of microRNAs promotes the progression of cancer through the repression of tumour suppressors. Here, we identified miR-181a-5p as a novel regulator of RASSF6 in GC. Functionally, ectopic expression or silencing of miR-181a-5p, respectively, promoted or inhibited GC cell proliferation, colony formation and cell cycle transition, as well as enhanced or prevented the invasion, metastasis of GC cells and epithelial to mesenchymal transition of GC cells in vitro and in vivo. Molecularly, miR-181a-5p functioned as an onco-miRNA by activating the RASSF6-regulated MAKP pathway. Overexpression or silencing of RASSF6 could partially reverse the effects of the overexpression or repression of miR-181a-5p on GC progress caused by activation of the MAKP pathway in vitro and in vivo. Clinically, high miR-181a-5p expression predicted poor survival in GC patients, especially combined with low RASSF6 expression. Collectively, we identified miR-181a-5p as an onco-miRNA, which acts by directly repressing RASSF6 in GC.
BackgroundDespite advancements in the diagnosis and treatment of colorectal cancer (CRC), many patients die because of tumor metastasis or recurrence. Therefore, identifying new prognostic markers and elucidating the mechanisms of CRC metastasis and recurrence will help to improve the prognosis of the disease. As dysregulation of microRNAs is strongly related to cancer progression, the aim of this study was to identify the role of miR-4775 in the prognosis of CRC patients and the underling mechanisms involved in CRC progression.MethodsqPCR and in situ hybridization were used to evaluate the expression of miR-4775 in 544 pairs of paraffin-embedded normal and CRC tissues. Kaplan–Meier analysis with the log-rank test was used for survival analyses. Immunohistochemical staining was applied to investigate the expression of miR-4775-regulated Smad7/TGFβ pathway-associated markers. In vitro and in vivo invasion and metastasis assays were used to explore the function of miR-4775 in the progression of CRC.ResultsmiR-4775 was identified as a high-risk factor for CRC metastasis and recurrence, with high levels predicting poor survival among the 544 studied CRC patients. Furthermore, high miR-4775 expression promoted the invasion of CRC cells as well as metastasis and the epithelial to mesenchymal transition (EMT) via Smad7-mediated activation of TGFβ signaling both in vitro and in vivo. Downregulating miR-4775 or overexpressing Smad7 reversed the tumor-promoting roles of miR-4775/Smad7/TGFβ in vitro and in vivo.ConclusionmiR-4775 promotes CRC metastasis and recurrence in a Smad7/TGFβ signaling-dependent manner, providing a new therapeutic target for inhibiting the metastasis or recurrence of the disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-017-0585-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.