In recent years, there are a large number of recommendation algorithms proposed in the literature, from traditional collaborative filtering to neural network algorithms. However, the concerns about how to standardize open source implementation of recommendation algorithms continually increase in the research community.In the light of this challenge, we propose a unified, comprehensive and efficient recommender system library called RecBole (pronounced as [rEk'boUl@r]), which provides a unified framework to develop and reproduce recommender systems for research purpose. In this library, we implement 53 recommendation models on 27 benchmark datasets, covering the categories of general recommendation, sequential recommendation, context-aware recommendation and knowledge-based recommendation. We implement the RecBole library based on PyTorch, which is one of the most popular deep learning frameworks. Our library is featured in many aspects, including general and extensible data structures, comprehensive benchmark models and datasets, efficient GPU-accelerated execution, and extensive and standard evaluation protocols. We provide a series of auxiliary functions, tools, and scripts to facilitate the use of this library, such as automatic parameter tuning and break-point resume. Such a framework is useful to standardize the implementation and evaluation of recommender systems. The project and documents are released at https://recbole.io.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.