In this paper, the Saul’yev finite difference scheme for a fully nonlinear partial differential equation with initial and boundary conditions is analyzed. The main advantage of this scheme is that it is unconditionally stable and explicit. Consistency and monotonicity of the scheme are discussed. Several finite difference schemes are used to compare the Saul’yev scheme with them. Numerical illustrations are given to demonstrate the efficiency and robustness of the scheme. In each case, it is found that the elapsed time for the Saul’yev scheme is shortest, and the solution by the Saul’yev scheme is nearest to the Crank–Nicolson method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.