Aim: Long read sequencing offers the promise of overcoming some of the challenges in accurate genotyping of complex genes, along with the advantage of straightforward variant phasing. We have established methods for sequencing and haplotyping of the whole CYP2D6 gene using nanopore sequencing. Materials and methods: 32 samples covering various haplotypes including gene duplication were sequenced on the GridION platform. Results: Haplotypes of 52 alleles matched accurately to known star (*) allele subvariants, with the remaining 12 being assigned as new alleles, or new subvariants of known alleles. Duplicated alleles could be detected by analyzing the allelic balance. Conclusion: Nanopore sequencing of CYP2D6 offers a high throughput method for accurate haplotyping, detection of new variants and determination of duplicated alleles.
Natriuretic Peptides (NP) are important in maintaining normal cardiac and metabolic status and have been used to predict cardiovascular events. Whether plasma concentrations of NP products within the normal range reflect cardio-metabolic health is unknown. Plasma NTproANP, NTproBNP and NTproCNP and their bioactive counterparts were measured in a random sample of 348 community dwellers aged 49–51 yr without heart disease and associations sought with established vascular risk factors, echocardiographic indices and a genetic variant previously linked with BNP. Stratified by sex, each of ten vascular risk factors were positively associated with NTproCNP whereas associations with NTproBNP and NTproANP were all negative. In both sexes, higher plasma NTproCNP was associated with higher arterial elastance, lower LV stroke volume and lower LV end diastolic volume. Exactly opposite associations were found with plasma NTproBNP or NTproANP. Sex specific differences were identified: positive association of NTproBNP with LV end systolic volume and the negative association with LV elastance were found only in males. The genetic variant rs198358 was independently associated with NTproBNP but not with NTproANP. In conclusion, higher NTproCNP is likely to be an adaptive response to impaired LV relaxation whereas genetic factors likely contribute to higher NTproBNP and improved cardio-metabolic health at midlife.
Background Environmental factors, such as oxidative stress, have the potential to modify the epigenetic landscape of cells. We have previously shown that DNA methyltransferase (DNMT) activity can be inhibited by sublethal doses of hydrogen peroxide (H2O2). However, site-specific changes in DNA methylation and the reversibility of any changes have not been explored. Using bead chip array technology, differential methylation was assessed in Jurkat T-lymphoma cells following exposure to H2O2. Results Sublethal H2O2 exposure was associated with an initial genome-wide decrease in DNA methylation in replicating cells, which was largely corrected 72 h later. However, some alterations were conserved through subsequent cycles of cell division. Significant changes to the variability of DNA methylation were also observed both globally and at the site-specific level. Conclusions This research indicates that increased exposure to H2O2 can result in long-term alterations to DNA methylation patterns, providing a mechanism for environmental factors to have prolonged impact on gene expression.
Angioedema is a rare adverse effect of the commonly used angiotensin-converting enzyme inhibitors (ACEi) and is reported to occur with a prevalence of 0.1%-0.7%.Although most ACEi-induced angioedema (ACEi-A) cases are mild, severe cases requiring intensive care and even resulting in death have been reported in the literature. The mechanisms underlying ACEi-A are not yet fully understood, but bradyki-
Introduction: Bi-allelic mutations in the gene for glucocerebrosidase (GBA) cause Gaucher disease, an autosomal recessive lysosomal storage disorder. Gaucher disease causing GBA mutations in the heterozygous state are also high risk factors for Parkinson's disease (PD). GBA analysis is challenging due to a related pseudogene and structural variations (SVs) that can occur at this locus. We have applied and refined a recently developed nanopore DNA sequencing method to analyze GBA variants in a clinically assessed New Zealand longitudinal cohort of PD. Method: We examined amplicons encompassing the coding region of GBA (8.9 kb) from 229 PD cases and 50 healthy controls using the GridION nanopore sequencing platform, and Sanger validation. Results: We detected 23 variants in 21 PD cases (9.2% of patients). We detected modest PD risk variant p.N409S (rs76763715) in one case, p.E365K (rs2230288) in 12 cases, and p.T408 M (rs75548401) in seven cases, one of whom also had p.E365K. We additionally detected the possible risk variants p.R78C (rs146774384) in one case, p.D179H (rs147138516) in one case which occurred on the same haplotype as p.E365K, and one novel variant c.335C > T or p.(L335 =), that potentially impacts splicing of GBA transcripts. Additionally, we found a higher prevalence of dementia among patients with GBA variants. Conclusion: This work confirmed the utility of nanopore sequencing as a high-throughput method to identify known and novel GBA variants, and to assign precise haplotypes. Our observations may contribute to improved understanding of the effects of variants on disease pathogenesis, and to the development of more targeted treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.