Objective: The aim of the study is to describe a portable and convenient software to facilitate the diagnostics of gestational (GDM) and pre-gestational diabetes (PGDM). Materials and methods: An open source software, d-GDM, was developed in Java. The integrated development environment Android Studio was used as the Android operational system. The software for GDM diagnosis uses the criteria endorsed by the International Association of Diabetes and Pregnancy Study Group, modified by the World Health Organization. Results: GDM diagnosis criteria is not simple to follow, therefore, errors or inconsistencies in diagnosis are expected and could delay the appropriate treatment. The d-GDM, was developed to assist GDM diagnosis with precision and consistency diagnostic reports. The open source software can be manipulated conveniently. The operator requires information regarding the gestational period and selects the appropriate glycaemic marker options from the menu. During operation, pressing the button "diagnosticar" on the screen will present the diagnosis and information for the follow up. d-GDM is available in Portuguese or English and can be downloaded from the Google PlayStore. A responsive web version of d-GDM is also available. The usefulness and accuracy of d-GDM was verify by field tests involving 22 subjects and 5 mobile phone brands. The approval regards userfriendliness and efficiency were 95% or higher. The GDM diagnosis were 100% correct, in this pilot test. d-GDM is a user-friendly, free software for diagnosis that was developed for mobile devices. It has the potential to contribute and facilitate the diagnosis of gestational diabetes for healthcare professionals.
Polymorphism rs17567 was associated with GDM in the studied population and carriers of the G-allele showed an increased risk for gestational diabetes (Odds ratio 1.61; 95% CI, 1.1 - 2.3).
ABSTRACT. Type 1 diabetes (T1D) is an autoimmune disease with a strong genetic component that has been associated with several genetic loci. Interleukin 18 (IL-18) is a potent proinflammatory cytokine, which is involved in the innate and adaptive immune responses, and in the pathogenesis of various diseases including T1D. Glucose transporter 4 (GLUT4) is known to be an insulin-responsive glucose transporter and has been associated with various diseases, including diabetes mellitus. We investigated the association of the polymorphisms rs187238 (IL-18) and rs5435 (GLUT4) in a case-control study in Euro-Brazilians with T1D (N = 136) and healthy subjects (N = 144). Real-time PCR with TaqMan ® fluorescent probes were applied for genotyping. All polymorphisms were in Hardy-Weinberg equilibrium. The minor allele frequencies for the G-allele (rs187238; IL-18) in healthy and T1D groups were 28.5% [95%CI = 23-34%] vs 31.6% [95%CI = 26-37%], P = 0.416, and for the T-allele (rs5435, GLUT4) were 33% Genotype comparisons for both polymorphisms showed no significant differences (P > 0.05). The polymorphisms rs187238 and rs5435 were not associated with T1D in the studied population. The minor allele frequencies for both polymorphisms were similar to those of other Caucasian populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.