Trichomoniasis, caused by the protozoan parasite Trichomonas vaginalis, is the most common nonviral sexually transmitted infection worldwide. Although drug treatment is available, unpleasant side effects and increased resistance to the nitroimidazole family have been documented. Hence, there is a need for the identification of new and safe therapeutic agents against T. vaginalis. Antimicrobial activity of anthraquinone compounds has been reported by a number of authors. The genus Morinda is well known for the diversity of anthraquinones with numerous biological activities. A new anthraquinone, lucidin‐ω‐isopropyl ether, was isolated from the roots of Morinda panamensis Seem. The structure of the compound was determined by 1H and 13C Nuclear Magnetic Resonance (NMR) analyses, in addition to comparison with literature reports. Using in vitro susceptibility assay, the half inhibitory concentration (IC50) of lucidin‐ω‐isopropyl ether for T. vaginalis (1.32 μg/mL) was found similar to that of metronidazole concentration tested (6 μM = 1.03 μg/mL). In addition, this anthraquinone was capable of inhibiting the parasite's ability to kill HeLa cells and decreased proteolytic activity of the proteinase TvMP50 from T. vaginalis. This was associated with the decreased expression of the mp50 gene. These results demonstrate the trichomonicidal potential by lucidin‐ω‐isopropyl ether. Further action‐mode studies are necessary to elucidate the antiparasitic mechanism of this new anthraquinone to develop a more potent antitrichomonal agent.
Traditional two-dimensional (2D) monolayer cell cultures have long been the gold standard for cancer biology research. However, their ability to accurately reflect the molecular mechanisms of tumors occurring in vivo is limited. Recent development of three-dimensional (3D) cell culture models facilitate the possibility to better recapitulate several of the biological and molecular characteristics of tumors in vivo, such as cancer cells heterogeneity, cell-extracellular matrix interactions, development of a hypoxic microenvironment, signaling pathway activities depending on contacts with extracellular matrix, differential growth kinetics, more accurate drugs response, and specific gene expression and epigenetic patterns. In this review, we discuss the utilization of different types of 3D culture models including spheroids, organotypic models and patient-derived organoids in gynecologic cancers research, as well as its potential applications in oncological research mainly for screening drugs with major physiological and clinical relevance. Moreover, microRNAs regulation of cancer hallmarks in 3D cell cultures from different types of cancers is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.