Growing evidence indicates that microRNAs (miRNAs or miRs) are involved in basic cell functions and oncogenesis. Here we report that miR-133 has a critical role in determining cardiomyocyte hypertrophy. We observed decreased expression of both miR-133 and miR-1, which belong to the same transcriptional unit, in mouse and human models of cardiac hypertrophy. In vitro overexpression of miR-133 or miR-1 inhibited cardiac hypertrophy. In contrast, suppression of miR-133 by 'decoy' sequences induced hypertrophy, which was more pronounced than that after stimulation with conventional inducers of hypertrophy. In vivo inhibition of miR-133 by a single infusion of an antagomir caused marked and sustained cardiac hypertrophy. We identified specific targets of miR-133: RhoA, a GDP-GTP exchange protein regulating cardiac hypertrophy; Cdc42, a signal transduction kinase implicated in hypertrophy; and Nelf-A/WHSC2, a nuclear factor involved in cardiogenesis. Our data show that miR-133, and possibly miR-1, are key regulators of cardiac hypertrophy, suggesting their therapeutic application in heart disease.
Activation and accumulation of cardiac fibroblasts, which result in excessive extracellular matrix deposition and consequent mechanical stiffness, myocyte uncoupling, and ischemia, are key contributors to heart failure progression. Recently, endothelial-to-mesenchymal transition (EndoMT) and the recruitment of circulating hematopoietic progenitors to the heart have been reported to generate substantial numbers of cardiac fibroblasts in response to pressure overload-induced injury; therefore, these processes are widely considered to be promising therapeutic targets. Here, using multiple independent murine Cre lines and a collagen1a1-GFP fusion reporter, which specifically labels fibroblasts, we found that following pressure overload, fibroblasts were not derived from hematopoietic cells, EndoMT, or epicardial epithelial-to-mesenchymal transition. Instead, pressure overload promoted comparable proliferation and activation of two resident fibroblast lineages, including a previously described epicardial population and a population of endothelial origin. Together, these data present a paradigm for the origins of cardiac fibroblasts during development and in fibrosis. Furthermore, these data indicate that therapeutic strategies for reducing pathogenic cardiac fibroblasts should shift from targeting presumptive EndoMT or infiltrating hematopoietically derived fibroblasts, toward common pathways upregulated in two endogenous fibroblast populations.
Amplification of the gene encoding the ErbB2 (Her2/neu) receptor tyrosine kinase is critical for the progression of several forms of breast cancer. In a large-scale clinical trial, treatment with Herceptin (trastuzumab), a humanized blocking antibody against ErbB2, led to marked improvement in survival. However, cardiomyopathy was uncovered as a mitigating side effect, thereby suggesting an important role for ErbB2 signaling as a modifier of human heart failure. To investigate the physiological role of ErbB2 signaling in the adult heart, we generated mice with a ventricular-restricted deletion of Erbb2. These ErbB2-deficient conditional mutant mice were viable and displayed no overt phenotype. However, physiological analysis revealed the onset of multiple independent parameters of dilated cardiomyopathy, including chamber dilation, wall thinning and decreased contractility. Additionally, cardiomyocytes isolated from these conditional mutants were more susceptible to anthracycline toxicity. ErbB2 signaling in cardiomyocytes is therefore essential for the prevention of dilated cardiomyopathy.
KChIP2, a gene encoding three auxiliary subunits of Kv4.2 and Kv4.3, is preferentially expressed in the adult heart, and its expression is downregulated in cardiac hypertrophy. Mice deficient for KChIP2 exhibit normal cardiac structure and function but display a prolonged elevation in the ST segment on the electrocardiogram. The KChIP2(-/-) mice are highly susceptible to the induction of cardiac arrhythmias. Single-cell analysis revealed a substrate for arrhythmogenesis, including a complete absence of transient outward potassium current, I(to), and a marked increase in action potential duration. These studies demonstrate that a defect in KChIP2 is sufficient to confer a marked genetic susceptibility to arrhythmias, establishing a novel genetic pathway for ventricular tachycardia via a loss of the transmural gradient of I(to).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.