Due to increased environmental pollution and global warming concerns, the use of energy storage units that can be supported by renewable energy resources in transportation becomes more of an issue and plays a vital role in terms of clean energy solutions. However, utilization of multiple energy storage units together in an electric vehicle makes the powertrain system more complex and difficult to control. For this reason, the present study proposes an advanced energy management strategy (EMS) for range extended battery electric vehicles (BEVs) with complex powertrain structure. Hybrid energy storage system (HESS) consists of battery, ultra-capacitor (UC), fuel cell (FC) and the vehicle is propelled with two complementary propulsion machines. To increase powertrain efficiency, traction power is simultaneously shared at different rates by propulsion machines. Propulsion powers are shared by HESS units according to following objectives: extending battery lifetime, utilizing UC and FC effectively. Primarily, to optimize the power split in HESS, a convex optimization problem is formulated to meet given objectives that results 5 years prolonged battery lifetime. However, convex optimization of complex systems can be arduous due to the excessive number of parameters that has to be taken into consideration and not all systems are suitable for linearization. Therefore, a neural network (NN)-based machine learning (ML) algorithm is proposed to solve multi-objective energy management problem. Proposed NN model is trained with convex optimization outputs and according to the simulation results the trained NN model solves the optimization problem within 92.5% of the convex optimization one.
In this work, a pedestrian detection method based on adaptive boosting is proposed. The proposed method works on still images. The features utilized in the work are derived from Haar-like templates. An Adaboost classifier is utilized for both feature selection and classification. To show the effectiveness of the proposed algorithm, the system is trained by using Nicta Pedestrian Dataset and tested by using Penn Fudan Pedestrian Dataset. The experimental result shows the proposed method's effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.