The fractional partial differential equations stand for natural phenomena all over the world from science to engineering. When it comes to obtaining the solutions of these equations, there are many various techniques in the literature. Some of these give to us approximate solutions; others give to us analytical solutions. In this paper, we applied the modified trial equation method (MTEM) to the one-dimensional nonlinear fractional wave equation (FWE) and time fractional generalized Burgers equation. Then, we submitted 3D graphics for different value of .
We obtain the classification of exact solutions, including soliton, rational, and elliptic solutions, to the one-dimensional general improved Camassa Holm KP equation and KdV equation by the complete discrimination system for polynomial method. In discussion, we propose a more general trial equation method for nonlinear partial differential equations with generalized evolution.
Nonlinear fractional partial differential equations have been solved with the help of the extended trial equation method. Based on the fractional derivative in the sense of modified Riemann-Liouville derivative and traveling wave transformation, the fractional partial differential equation can be turned into the nonlinear nonfractional ordinary differential equation. For illustrating the reliability of this approach, we apply it to the generalized third order fractional KdV equation and the fractionalKn,nequation according to the complete discrimination system for polynomial method. As a result, some new exact solutions to these nonlinear problems are successfully constructed such as elliptic integral function solutions, Jacobi elliptic function solutions, and soliton solutions.
In this paper, we study the Kadomtsev-Petviashvili equation with generalized evolution and derive some new results using the approach called the trial equation method. The obtained results can be expressed by the soliton solutions, rational function solutions, elliptic function solutions and Jacobi elliptic function solutions. In the discussion, we give a new version of the trial equation method for nonlinear differential equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.