RCW 120 is a Galactic H II region that has a beautiful ring shape that is bright in the infrared. Our new CO J = 1-0 and J = 3-2 observations performed with the NANTEN2, Mopra, and ASTE telescopes have revealed that two molecular clouds with a velocity separation of 20 km s −1 are both physically associated with RCW 120. The cloud at −8 km s −1 apparently traces the infrared ring, while the other cloud at −28 km s −1 is distributed just outside the opening of the infrared ring, interacting with the H II region as suggested by the high kinetic temperature of the molecular gas and by the complementary distribution with the ionized gas. A spherically expanding shell driven by the H II region is usually considered to be the origin of the observed ring structure in RCW 120. Our observations, however, indicate no evidence of the expanding motion in the velocity space, which is inconsistent with the expanding shell model. We postulate an alternative that, by applying the model introduced by Habe & Ohta, the exciting O star in RCW 120 was formed by a collision between the present two clouds at a collision velocity of ∼30 km s −1 . In the model, the observed infrared ring can be interpreted as the cavity created in the larger cloud by the collision, whose inner surface is illuminated by the strong ultraviolet radiation after the birth of the O star. We discuss that the present cloud-cloud collision scenario explains the observed signatures of RCW 120, i.e., its ring morphology, coexistence of the two clouds and their large velocity separation, and absence of the expanding motion.
We present distributions of two molecular clouds having velocities of 2 and 14 km s −1 toward RCW 38, the youngest super star cluster in the Milky Way, in the 12 CO J = 1-0 and 3-2 and 13 CO J = 1-0 transitions. The two clouds are likely physically associated with the cluster as verified by the high intensity ratio of the J = 3-2 emission to the J = 1-0 emission, the bridging feature connecting the two clouds in velocity, and their morphological correspondence with the infrared dust emission. The velocity difference is too large for the clouds to be gravitationally bound. We frame a hypothesis that the two clouds are colliding with each other by chance to trigger formation of the ∼20 O stars that are localized within ∼0.5 pc of the cluster center in the 2 km s −1 cloud. We suggest that the collision is currently continuing toward part of the 2 km s −1 cloud where the bridging feature is localized. This is the third super star cluster alongside Westerlund 2 and NGC 3603 where cloud-cloud collision has triggered the cluster formation. RCW 38 is the youngest super star cluster in the Milky Way, holding a possible sign of on-going O star formation, and is a promising site where we may be able to witness the moment of O star formation.
High-mass star formation is one of the top-priority issues in astrophysics. Recent observational studies are revealing that cloud-cloud collisions may play a role in high-mass star formation in several places in the Milky Way and the Large Magellanic Cloud. The Trifid Nebula M 20 is a well known galactic Hii region ionized by a single O7.5 star. In 2011, based on the CO observations with NANTEN2 we reported that the O star was formed by the collision between two molecular clouds ∼0.3 Myr ago. Those observations identified two molecular clouds towards M 20, traveling at a relative velocity of 7.5 km s −1 . This velocity separation implies that the clouds cannot be gravitationally bound to M20, but since the clouds show signs of heating by the stars there they must be spatially coincident with it. A collision is therefore highly possible. In this paper we present the new CO J=1-0 and J=3-2 observations of the colliding clouds in M 20 performed with the Mopra and ASTE telescopes. The high resolution observations revealed the two molecular clouds have peculiar spatial and velocity structures, i.e., the spatially complementary distribution between the two clouds and the bridge feature which connects the two clouds in velocity space. Based on a new comparison with numerical models, we find that this complementary distribution is an expected outcome of cloud-cloud collisions, and that the bridge feature can be interpreted as the turbulent gas excited at the interface of the collision. Our results reinforce the cloud-cloud collision scenario in M 20.
The Orion Nebula Cluster toward the Hii region M42 is the most outstanding young cluster at the smallest distance 410 pc among the rich high-mass stellar clusters. By newly analyzing the archival molecular data of the 12 CO(J = 1-0) emission at 21 ′′ resolution, we identified at least three pairs of complementary distributions between two velocity components at 8 km s −1 and 13 km s −1 . We present a hypothesis that the two clouds collided with each other and triggered formation of the high-mass stars, mainly toward two regions including the nearly ten O stars, θ 1 Ori and θ 2 Ori, in M42 and the B star, NU Ori, in M43. The timescale of the collision is estimated to be ∼ 0.1 Myr by a ratio of the cloud size and velocity corrected for projection, which is consistent with the age of the youngest cluster members less than 0.1 Myr. The majority of the low-mass cluster members were formed prior to the collision in the last one Myr. We discuss implications of the present hypothesis and the scenario of high-mass star formation by comparing with the other eight cases of triggered O star formation via cloud-cloud collision.Evidence for triggered formation of O / early B star(s) by cloud-cloud collision is found in the four super star clusters, Westerlund 2, NGC 3603, RCW 38 and [DBS2003] 179 (Furukawa et al. 2009;Ohama et al. 2010;Fukui et al. 2014, Kuwahara et al. 2017, in the two Hii regions with single O stars, RCW 120 and M20 (Torii et al.
We have carried out 13 CO(J=2-1) observations of the active star-forming region N159 West in the LMC with ALMA. We have found that the CO distribution at a sub-pc scale is highly elongated with a small width. These elongated clouds called "filaments" show straight or curved distributions with a typical width of 0.5-1.0 pc and a length of 5-10 pc. All the known infrared YSOs are located toward the filaments. We have found broad CO wings of two molecular outflows toward young high-mass stars in N159W-N and N159W-S, whose dynamical timescale is ∼10 4 yrs. This is the first discovery of protostellar outflow in external galaxies. For N159W-S which is located toward an intersection of two filaments we set up a hypothesis that the two filaments collided with each other ∼10 5 yrs ago and triggered formation of the high-mass star having ∼37 M ⊙ . The colliding clouds show significant enhancement in linewidth in the intersection, suggesting excitation of turbulence in the shocked interface layer between them as is consistent with the magneto-hydro-dynamical numerical simulations (Inoue & Fukui 2013). This turbulence increases the mass accretion rate to ∼ 6 × 10 −4 M ⊙ yr −1 , which is required to overcome the stellar feedback to form the high-mass star.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.