L-type amino acid transporter 1 (LAT1) plays a role in transporting essential amino acids including leucine, which regulates the mTOR signaling pathway. Here, we studied the expression profile and functional role of LAT1 in bladder cancer. Furthermore, the pharmacological activity of JPH203, a specific inhibitor of LAT1, was studied in bladder cancer. LAT1 expression in bladder cancer cells was higher than that in normal cells. SiLAT1 and JPH203 suppressed cell proliferative and migratory and invasive abilities in bladder cancer cells. JPH203 inhibited leucine uptake by > 90%. RNA-seq analysis identified insulin-like growth factor-binding protein-5 (IGFBP-5) as a downstream target of JPH203. JPH203 inhibited phosphorylation of MAPK / Erk, AKT, p70S6K and 4EBP-1. Multivariate analysis revealed that high LAT1 expression was found as an independent prognostic factor for overall survival (HR3.46 P = 0.0204). Patients with high LAT1 and IGFBP-5 expression had significantly shorter overall survival periods than those with low expression (P = 0.0005). High LAT1 was related to the high Grade, pathological T stage, LDH, and NLR. Collectively, LAT1 significantly contributed to bladder cancer progression. Targeting LAT1 by JPH203 may represent a novel therapeutic option in bladder cancer treatment.Bladder cancer (BC) is the ninth most common malignant tumour worldwide, with 430 000 patients newly diagnosed and 165 000 deaths annually 1 . The pathological type of BC is mainly urothelial cancer ( > 90%) and approximately 70% of patients had non-muscle-invasive BC at diagnosis 2 . These patients have a favorable prognosis with transurethral resection and subsequent intravesical injection therapy, whereas the survival rate of patients with locally advanced and metastatic BC is poor 3 . For metastatic BC patients, platinum-based systematic chemotherapy is the classical treatment, while immunotherapy targeting programmed cell death ligand 1 (PD-L1) blocking antibody was recently approved in Japan 4 . However, drug resistance will occur, and the survival benefit of these agents is not adequate. Their limited efficacy is due to side effects and challenges of drug resistance, leading to treatment failure and require additional treatment options 5 . Therefore, more effective and less toxic therapeutic strategies are needed for the treatment of metastatic BC. Additionally, there are presently no useful diagnostic markers for BC. The urine cytology test is a non-invasive examination, but its sensitivity remains low. Cystoscopy is an essential diagnostic tool but is invasive for patients 5 . Thus, a novel therapeutic approach and biomarker candidates for BC remain a major issue.
Androgen receptor (AR) is a validated drug target for all stages of prostate cancer including metastatic castration-resistant prostate cancer (CRPC). All current hormone therapies for CRPC target the C-terminal ligand-binding domain of AR and ultimately all fail with resumed AR transcriptional activity. Within the AR N-terminal domain (NTD) is activation function-1 (AF-1) that is essential for AR transcriptional activity. Inhibitors of AR AF-1 would potentially block most AR mechanisms of resistance including constitutively active AR splice variants that lack the ligand-binding domain. Here we provide evidence that sintokamide A (SINT1) binds AR AF-1 region to specifically inhibit transactivation of AR NTD. Consistent with SINT1 targeting AR AF-1, it attenuated transcriptional activities of both full-length AR and constitutively active AR splice variants, which correlated with inhibition of growth of enzalutamide-resistant prostate cancer cells expressing AR splice variants. In vivo, SINT1 caused regression of CRPC xenografts and reduced expression of prostate-specific antigen, a gene transcriptionally regulated by AR. Inhibition of AR activity by SINT1 was additive to EPI-002, a known AR AF-1 inhibitor that is in clinical trials (NCT02606123). This implies that SINT1 binds to a site on AF-1 that is unique from EPI. Consistent with this suggestion, these two compounds showed differences in blocking AR interaction with STAT3. This work provides evidence that the intrinsically disordered NTD of AR is druggable and that SINT1 analogs may provide a novel scaffold for drug development for the treatment of prostate cancer or other diseases of the AR axis.
Abstract:The androgen receptor is a transcription factor and validated therapeutic target for prostate cancer. Androgen deprivation therapy remains the gold standard treatment, but it is not curative, and eventually the disease will return as lethal castration-resistant prostate cancer. There have been improvements in the therapeutic landscape with new agents approved, such as abiraterone acetate, enzalutamide, sipuleucel-T, cabazitaxel and Ra-223, in the past 5 years. New insight into the mechanisms of resistance to treatments in advanced disease is being and has been elucidated. All current androgen receptor-targeting therapies inhibit the growth of prostate cancer by blocking the ligand-binding domain, where androgen binds to activate the receptor. Persuasive evidence supports the concept that constitutively active androgen receptor splice variants lacking the ligand-binding domain are one of the resistant mechanisms underlying advanced disease. Transcriptional activity of the androgen receptor requires a functional AF-1 region in its N-terminal domain. Preclinical evidence proved that this domain is a druggable target to forecast a potential paradigm shift in the management of advanced prostate cancer. This review presents an overview of androgen receptor-related mechanisms of resistance as well as novel therapeutic agents to overcome resistance that is linked to the expression of androgen receptor splice variants in castration-resistant prostate cancer.
Purpose The PI3K/Akt/mTOR pathway is activated in most castration-resistant prostate cancer (CRPC). Transcriptionally active androgen receptor (AR) plays a role in the majority of CRPC. Therefore, co-targeting full-length (FL) AR and PI3K/Akt/mTOR signaling has been proposed as a possible more effective therapeutic approach for CRPC. However, truncated AR-splice variants (AR-Vs) that are constitutively active and dominant over FL-AR are associated with tumor progression and resistance mechanisms in CRPC. It is currently unknown how blocking the PI3K/Akt/mTOR pathway impacts prostate cancer driven by AR-Vs. Here we evaluated the efficacy and mechanism of combination therapy to block mTOR activity together with EPI-002, an AR N-terminal domain (NTD) antagonist that blocks the transcriptional activities of FL-AR and AR-Vs in models of CRPC. Experimental design To determine the functional roles of FL-AR, AR-Vs and PI3K/Akt/mTOR pathways, we employed EPI-002 or enzalutamide and BEZ235 (low dose) or everolimus in human prostate cancer cells that express FL-AR or FL-AR and AR-Vs (LNCaP95). Gene expression and efficacy were examined in vitro and in vivo. Results EPI-002 had antitumor activity in enzalutamide-resistant LNCaP95 cells that was associated with decreased expression of AR-V target genes (e.g., UBE2C). Inhibition of mTOR provided additional blockade of UBE2C expression. A combination of EPI-002 and BEZ235 decreased the growth of LNCaP95 cells in vitro and in vivo. Conclusion Co-targeting mTOR and AR NTD to block transcriptional activities of FL-AR and AR-Vs provided maximum antitumor efficacy in PTEN-null, enzalutamide resistant CRPC.
Fork-head box protein A1 (FOXA1) is a “pioneer factor” that is known to bind to the androgen receptor (AR) and regulate the transcription of AR-specific genes. However, the precise role of FOXA1 in prostate cancer (PC) remains unknown. In this study, we report that FOXA1 plays a critical role in PC cell proliferation. The expression of FOXA1 was higher in PC than in normal prostate tissues (P = 0.0002), and, using immunohistochemical analysis, we found that FOXA1 was localized in the nucleus. FOXA1 expression levels were significantly correlated with both PSA and Gleason scores (P = 0.016 and P = 0.031, respectively). Moreover, FOXA1 up-regulation was a significant factor in PSA failure (P = 0.011). Depletion of FOXA1 in a prostate cancer cell line (LNCaP) using small interfering RNA (siRNA) significantly inhibited AR activity, led to cell-growth suppression, and induced G0/G1 arrest. The anti-proliferative effect of FOXA1 siRNA was mediated through insulin-like growth factor binding protein 3 (IGFBP-3). An increase in IGFBP-3, mediated by depletion of FOXA1, inhibited phosphorylation of MAPK and Akt, and increased expression of the cell cycle regulators p21 and p27. We also found that the anti-proliferative effect of FOXA1 depletion was significantly reversed by simultaneous siRNA depletion of IGFBP-3. These findings provide direct physiological and molecular evidence for a role of FOXA1 in controlling cell proliferation through the regulation of IGFBP-3 expression in PC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.