Tokai University School of Medicine provided a short-term e-Health training program for persons from Pacific Island Nations from 2006 until 2008 supported by funds from the Sasakawa Peace Foundation. There were lectures on software, hardware and topics relating to e-Health. We could assess the current medical situation in the Pacific Islands through this training course, and also obtain relevant material to analyze appropriate measures deemed necessary to improve the situation.
Repeated reduction and oxidation of metallic nickel in the anodes of solid oxide fuel cell (SOFC) causes volume changes and agglomeration. This disrupts the electron conducting network, resulting in deterioration of the electrochemical performance. It is therefore desirable to develop more robust anodes with high redox stability. Here, new cermet anodes are developed, based on nickel alloyed with Co, Fe, and/or Cr. The stable phases of these different alloys are calculated for oxidizing and reducing conditions, and their electrochemical characteristics are evaluated. Whilst alloying causes a slight decrease in power generation efficiency, the Ni-alloy based anodes have significantly improved redox cycle durability. Microstructural observation reveals that alloying results in the formation of a dense oxide film on the surface of the catalyst particle (e.g. Co-oxide or a complex Fe–Ni–Cr oxide). These oxide layers help suppress oxidation of the underlying nickel catalyst particles, preventing oxidation-induced volume changes/agglomeration, and thereby preserving the electron conducting pathways. As such, the use of these alternative Ni-alloy based cermets significantly improves the redox stability of SOFC anodes.
Using a CO 2 laser-equipped electromagnetic levitator, we carried out the containerless crystallization of Si and Ge. From the point of interface morphologies, the relation between growth velocities and undercoolings was classified into three regions. In regions I and II, although the morphologies of growing crystals are different: plate-like needle crystals in region I and facetted dendrite at region II, the growth velocities in these two regions are fundamentally scaled by the thermal diffusivities and the temperature increase caused by the release of the latent heat. This result means that the growth velocity can be expressed by the product of the thermal diffusivity and the growth kinetics. An analysis of the dendrite morphologies revealed that the kinetics of crystal growth in regions I and II represent two-dimensional nucleation at the reentrant corner formed at the edge of the two parallel twins. In region III, thermal diffusion-controlled interface attachment kinetics control as described by a modified Wilson-Frenkel model.
A method of graphene synthesis at a desired position on polymer substrates by laser irradiation has been studied. Polyethylene naphthalate films were used as substrates, on which a thin Ni film was deposited as a catalyst layer. The irradiation of a focused laser made a hole in the Ni film and the graphene was synthesized in the hole by the surface decomposition of the polymer. The laser power dependence of the hole radius was successfully explained by a dynamical model of thermodiffusion. The quality of the laser-synthesized graphene was studied by micro-Raman scattering. Typical ambipolar characteristics of the synthesized graphene were observed in field-effect transistors. We studied the application of the laser-synthesized graphene to strain sensors using the sensitivity of the electric conductance to the strain induced by the bending deformation of substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.