Rationale: Physical exercise provides benefits for various organ systems, and some of systemic effects of exercise are mediated through modulation of muscle-derived secreted factors, also known as myokines. Myonectin/C1q (complement component 1q)/TNF (tumor necrosis factor)-related protein 15/erythroferrone is a myokine that is upregulated in skeletal muscle and blood by exercise. Objective: We investigated the role of myonectin in myocardial ischemic injury. Methods and Results: Ischemia-reperfusion in myonectin-knockout mice led to enhancement of myocardial infarct size, cardiac dysfunction, apoptosis, and proinflammatory gene expression compared with wild-type mice. Conversely, transgenic overexpression of myonectin in skeletal muscle reduced myocardial damage after ischemia-reperfusion. Treadmill exercise increased circulating myonectin levels in wild-type mice, and it reduced infarct size after ischemia-reperfusion in wild-type mice, but not in myonectin-knockout mice. Treatment of cultured cardiomyocytes with myonectin protein attenuated hypoxia/reoxygenation-induced apoptosis via S1P (sphingosine-1-phosphate)-dependent activation of cAMP/Akt cascades. Similarly, myonectin suppressed inflammatory response to lipopolysaccharide in cultured macrophages through the S1P/cAMP/Akt-dependent signaling pathway. Moreover, blockade of S1P-dependent pathway reversed myonectin-mediated reduction of myocardial infarct size in mice after ischemia-reperfusion. Conclusions: These data indicate that myonectin functions as an endurance exercise-induced myokine which ameliorates acute myocardial ischemic injury by suppressing apoptosis and inflammation in the heart, suggesting that myonectin mediates some of the beneficial actions of exercise on cardiovascular health.
Obesity is closely associated with the progression of vascular disorders, including atherosclerosis and postangioplasty restenosis. C1q/TNF-related protein (CTRP) 9 is an adipocytokine that is down-regulated in obese mice. Here we investigated whether CTRP9 modulates neointimal hyperplasia and vascular smooth muscle cell (VSMC) proliferation in vivo and in vitro. Left femoral arteries of wild-type (WT) mice were injured by a steel wire. An adenoviral vector expressing CTRP9 (Ad-CTRP9) or β-galactosidase as a control was intravenously injected into WT mice 3 d before vascular injury. Delivery of Ad-CTRP9 significantly attenuated the neointimal thickening and the number of bromodeoxyuridine-positive proliferating cells in the injured arteries compared with that of control. Treatment of VSMCs with CTRP9 protein attenuated the proliferative and chemotactic activities induced by growth factors including platelet-derived growth factor (PDGF)-BB, and suppressed PDGF-BB-stimulated phosphorylation of ERK. CTRP9 treatment dose-dependently increased cAMP levels in VSMCs. Blockade of cAMP-PKA pathway reversed the inhibitory effect of CTRP9 on DNA synthesis and ERK phosphorylation in response to PDGF-BB. The present data indicate that CTRP9 functions to attenuate neointimal formation following vascular injury through its ability to inhibit VSMC growth via cAMP-dependent mechanism, suggesting that the therapeutic approaches to enhance CTRP9 production could be valuable for prevention of vascular restenosis after angioplasty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.