We consider adaptive maximum-likelihood-type estimators and adaptive Bayes-type ones for discretely observed ergodic diffusion processes with observation noise whose variance is constant. The quasi-likelihood functions for the diffusion and drift parameters are introduced and the polynomial-type large deviation inequalities for those quasi-likelihoods are shown to see the convergence of moments for those estimators.
We treat the change point problem in ergodic diffusion processes from discrete observations. Tonaki et al. ( 2020) proposed adaptive tests for detecting changes in the diffusion and drift parameters in ergodic diffusion models. When any changes are detected by this method, the next question to be considered is where the change point is. Therefore, we propose the method to estimate the change point of the parameter for two cases: the case where there is a change in the diffusion parameter, and the case where there is no change in the diffusion parameter but a change in the drift parameter. Furthermore, we present rates of convergence and distributional results of the change point estimators. Some examples and simulation results are also given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.