Background Rabies is a fatal zoonotic disease that is maintained in domestic dogs and wildlife populations in the Republic of South Africa. A retrospective study was conducted to improve understanding of the dynamics of rabies in humans, domestic dogs, and wildlife species, in relation to the ecology for three northern provinces of South Africa (Limpopo, Mpumalanga, and North-West) between 1998 and 2017. Methods A descriptive epidemiology study was conducted for human and animal rabies. Dog rabies cases were analyzed using spatio-temporal scan statistics. The reproductive number (Rt) was estimated for the identified disease clusters. A phylogenetic tree was constructed based on the genome sequences of rabies viruses isolated from dogs, jackals, and an African civet, and Bayesian evolutionary analysis using a strict time clock model. Several ecological and socio-economic variables associated with dog rabies were modeled using univariate analyses with zero-inflated negative binomial regression and multivariable spatial analyses using the integrated nested Laplace approximation for two time periods: 1998–2002 and 2008–2012. Results Human rabies cases increased in 2006 following an increase in dog rabies cases; however, the human cases declined in the next year while dog rabies cases fluctuated. Ten disease clusters of dog rabies were identified, and utilizing the phylogenetic tree, the dynamics of animal rabies over 20 years was elucidated. In 2006, a virus strain that re-emerged in eastern Limpopo Province caused the large and persistent dog rabies outbreaks in Limpopo and Mpumalanga Provinces. Several clusters included a rabies virus variant maintained in jackals in Limpopo Province, and the other variant in dogs widely distributed. The widely distributed variant maintained in jackal populations in North-West Province caused an outbreak in dogs in 2014. The Rt was high when the disease clusters were associated with either multiple virus strains or multiple animal species. High-risk areas included Limpopo and Mpumalanga Provinces characterized by woodlands and high temperatures and precipitation. Conclusion Canine rabies was maintained mainly in dog populations but was also associated with jackal species. Rural communities in Limpopo and Mpumalanga Provinces were at high risk of canine rabies originating from dogs.
Rabies is a lethal zoonotic disease mainly transmitted to humans by dog bites. The purpose of this study was to assess the efficacy of rabies control policies in Japan, which resulted in the elimination of the disease from the country in 1957. Using historical records from the Kanto region (Chiba, Kanagawa, Saitama and Tokyo Prefectures) between 1947 and 1956 where the final canine cases were recorded, we undertook a descriptive epidemiological study, applying spatio‐temporal scan statistics using SaTScan and estimating the effective reproduction number (Rt) for the clusters and each prefecture using the growth rates. There were 1,567 dog rabies and 161 human rabies cases recorded during this period. Vaccination coverage in registered dogs was over 70% after 1951, with much lower coverage in free‐roaming and unregistered dogs. Eight clusters of dog rabies cases were identified: the first appeared in 1947 in Tokyo and was linked to three further clusters in peripheral prefectures between 1947 and 1951. Three more clusters occurred in Tokyo again between 1952 and 1954, and the last cluster was in Tokyo and Kanagawa between 1955 and 1956. Rt in the first cluster was 1.68, and Rt values in the others ranged between 1.18 and 1.86, with an exception of 4.05 in the smallest cluster in Tokyo in 1952 (10 cases). The moving average of Rt coincided with the clusters. As dog vaccination and dog management progressed, and the number of dog rabies cases declined, the moving average of Rt declined to below 1. Delays in the implementation of dog management policies in Kanagawa may have prolonged this last outbreak. These results demonstrate the effectiveness of coordinated control policy involving dog vaccination and management of free‐roaming dog populations for rabies elimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.