According to the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 CNS WHO), IDH-mutant astrocytic gliomas comprised WHO grade II diffuse astrocytoma, IDH-mutant (AII), WHO grade III anaplastic astrocytoma, IDH-mutant (AAIII), and WHO grade IV glioblastoma, IDH-mutant (GBM). Notably, IDH gene status has been made the major criterion for classification while the manner of grading has remained unchanged: it is based on histological criteria that arose from studies which antedated knowledge of the importance of IDH status in diffuse astrocytic tumor prognostic assessment. Several studies have now demonstrated that the anticipated differences in survival between the newly defined AII and AAIII have lost their significance. In contrast, GBM still exhibits a significantly worse outcome than its lower grade IDH-mutant counterparts. To address the problem of establishing prognostically significant grading for IDH-mutant astrocytic gliomas in the IDH era, we undertook a comprehensive study that included assessment of histological and genetic approaches to prognosis in these tumors. A discovery cohort of 211 IDH-mutant astrocytic gliomas with an extended observation was subjected to histological review, image analysis, and DNA methylation studies. Tumor group-specific methylation profiles and copy number variation (CNV) profiles were established for all gliomas. Algorithms for automated CNV analysis were developed. All tumors exhibiting 1p/19q codeletion were excluded from the series. We developed algorithms for grading, based on molecular, morphological and clinical data. Performance of these algorithms was compared with that of WHO grading. Three independent cohorts of 108, 154 and 224 IDH-mutant astrocytic gliomas were used to validate this approach. In the discovery cohort several molecular and clinical parameters were of prognostic relevance. Most relevant for overall survival (OS) was CDKN2A/B homozygous deletion. Other parameters with major influence were necrosis and the total number of CNV. Proliferation as assessed by mitotic count, which is a key parameter in 2016 CNS WHO grading, was of only minor influence. Employing the parameters most relevant for OS in our discovery set, we developed two models for grading these tumors. These models performed significantly better than WHO grading in both the discovery and the validation sets. Our novel algorithms for grading IDH-mutant astrocytic gliomas overcome the challenges caused by introduction of IDH status into the WHO classification of diffuse astrocytic tumors. We propose that these revised approaches be used for grading of these tumors and incorporated into future WHO criteria.
The AT-rich interacting domain-containing protein 1A gene (ARID1A) encodes ARID1A, a member of the SWI/SNF chromatin remodeling complex. Mutation of ARID1A induces changes in expression of multiple genes (CDKN1A, SMAD3, MLH1 and PIK3IP1) via chromatin remodeling dysfunction, contributes to carcinogenesis, and has been shown to cause transformation of cells in association with the PI3K/AKT pathway. Information on ARID1A has emerged from comprehensive genome-wide analyses with next-generation sequencers. ARID1A mutations have been found in various types of cancer and occur at high frequency in endometriosis-associated ovarian cancer, including clear cell adenocarcinoma and endometrioid adenocarcinoma, and also occur at endometrial cancer especially in endometrioid adenocarcinoma. It has also been suggested that ARID1A mutation occurs at the early stage of canceration from endometriosis to endometriosis-associated carcinoma in ovarian cancer and also from atypical endo-metrial hyperplasia to endometrioid adenocarcinoma in endometrial cancer. Therefore, development of a screening method that can detect mutations of ARID1A and activation of the PI3K/AKT pathway might enable early diagnosis of endometriosis-associated ovarian cancers and endometrial cancers. Important results may also emerge from a current clinical trial examining a multidrug regimen of temsirolimus, a small molecule inhibitor of the PI3K/AKT pathway, for treatment of advanced ovarian clear cell adenocarcinoma with ARID1A mutation and PI3K/AKT pathway activation. Also administration of sorafenib, a multikinase inhibitor, can inhibit cancer proliferation with PIK3CA mutation and resistance to mTOR inhibitors and GSK126, a molecular-targeted drug can inhibit proliferation of ARID1A-mutated ovarian clear cell adenocarcinoma cells by targeting and inhibiting EZH2. Further studies are needed to determine the mechanism of chromatin remodeling dysregulation initiated by ARID1A mutation, to develop methods for early diagnosis, to investigate new cancer therapy targeting ARID1A, and to examine the involvement of ARID1A mutations in development, survival and progression of cancer cells.
Abstract-We reported previously that ATP2B1 was one of the genes for hypertension receptivity in a large-scale Japanese population, which has been replicated recently in Europeans and Koreans. ATP2B1 encodes the plasma membrane calcium ATPase isoform 1, which plays a critical role in intracellular calcium homeostasis. In addition, it is suggested that ATP2B1 plays a major role in vascular smooth muscle contraction. Because the ATP2B1 knockout (KO) mouse is embryo-lethal, we generated mice with vascular smooth muscle cell-specific KO of ATP2B1 using the Cre-loxP system to clarify the relationship between ATP2B1 and hypertension. The KO mice expressed significantly lower levels of ATP2B1 mRNA and protein in the aorta compared with control mice. KO mice showed significantly higher systolic blood pressure as measured by tail-cuff method and radiotelemetric method. Similar to ATP2B1, the expression of the Na 1 In the Millennium Genome Project 2 we identified single nucleotide polymorphisms located upstream or within the ATP2B1 gene as strong susceptible polymorphisms for hypertension in Japanese. Some of these findings have been replicated in individuals of European descent in the Global Blood Pressure Genetics sample and have also been validated in other studies in individuals of European descent, 3 Koreans, 4-6 and Japanese. 7 The single nucleotide polymorphisms of ATP2B1 identified in these studies showed a significant association with hypertension in various large-scale study populations with different methods, genome-wide association study in the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium and the Korean study and candidate gene analysis in our previous study. However, the functional roles of ATP2B1 in blood pressure control have not yet been proven in vivo. The ATP2B1-null mutant mouse has been reported to be embryolethal 8 ; thus, we need to make a conditional knockout (KO) mouse model of ATP2B1 using the Cre-loxP system to reveal the function of the gene. Because the ATP2B1 gene encodes one of the calcium pumps and plays an important role in contraction of bladder smooth muscle, 9 we selected vascular smooth
Abstract-We cloned a novel molecule interacting with angiotensin II type 1 receptor, which we named ATRAP (for angiotensin II type 1 receptor-associated protein). Previous in vitro studies showed that ATRAP significantly promotes constitutive internalization of the angiotensin II type 1 receptor and further attenuates angiotensin II-mediated hypertrophic responses in cardiomyocytes. The present study was designed to investigate the putative functional role of ATRAP in cardiac hypertrophy by angiotensin II infusion in vivo. We first examined the effect of angiotensin II infusion on endogenous ATRAP expression in the heart of C57BL/6J wild-type mice. The angiotensin II treatment promoted cardiac hypertrophy, concomitant with a significant decrease in cardiac ATRAP expression, but without significant change in cardiac angiotensin II type 1 receptor expression. We hypothesized that a downregulation of the cardiac ATRAP to angiotensin II type 1 receptor ratio is involved in the pathogenesis of cardiac hypertrophy. To examine this hypothesis, we next generated transgenic mice expressing ATRAP specifically in cardiomyocytes under control of the ␣-myosin heavy chain promoter. In cardiac-specific ATRAP transgenic mice, the development of cardiac hypertrophy, activation of p38 mitogen-activated protein kinase, and expression of hypertrophy-related genes in the context of angiotensin II treatment were completely suppressed, in spite of there being no significant difference in blood pressure on radiotelemetry between the transgenic mice and littermate control mice. These results demonstrate that cardiomyocyte-specific overexpression of ATRAP in vivo abolishes the cardiac hypertrophy provoked by chronic angiotensin II infusion, thereby suggesting ATRAP to be a novel therapeutic target in cardiac hypertrophy. (Hypertension. 2010;55:1157-1164.)Key Words: basic science Ⅲ receptors Ⅲ gene expression/regulation Ⅲ hypertrophy/remodeling Ⅲ angiotensin receptors E vidence suggests that the activation of angiotensin II (Ang II) type 1 receptor (AT 1 R) through the tissue renin-angiotensin system may play an important role in the development of cardiac hypertrophy. The carboxyl-terminal portion of AT 1 R is involved in the control of AT 1 R internalization independent of G protein coupling, and it plays an important role in linking receptor-mediated signal transduction to the specific biological response to Ang II. 1,2 We previously cloned a novel AT 1 R-associated protein (ATRAP) that specifically interacts with the carboxylterminal domain of AT 1 R. [3][4][5][6] We showed that ATRAP is broadly expressed in many tissues, as is AT 1 R, and suppresses Ang II-mediated pathological responses in cardiomyocytes and vascular smooth muscle cells by promoting the constitutive internalization of AT 1 R. 7-9 However, the function of ATRAP in cardiac hypertrophy in vivo still remains to be demonstrated. Thus, the present study was carried out to investigate whether there is a role for ATRAP in the cardiac hypertrophy induced by chronic Ang II ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.