We examined the expression patterns of 4 layer-specific genes in monkey and mouse cortices by fluorescence double in situ hybridization. Based on their coexpression profiles, we were able to distinguish several subpopulations of deep layer neurons. One group was characterized by the expression of ER81 and the lack of Nurr1 mRNAs and mainly localized to layer 5. In monkeys, this neuronal group was further subdivided by 5-HT2C receptor mRNA expression. The 5-HT2C(+)/ER81(+) neurons were located in layer 5B in most cortical areas, but they intruded layer 6 in the primary visual area (V1). Another group of neurons, in monkey layer 6, was characterized by Nurr1 mRNA expression and was further subdivided as Nurr1(+)/connective tissue growth factor (CTGF)(-) and Nurr1(+)/CTGF(+) neurons in layers 6A and 6B, respectively. The Nurr1(+)/CTGF(+) neurons coexpressed ER81 mRNA in monkeys but not in mice. On the basis of tracer injections in 3 monkeys, we found that the Nurr1(+) neurons in layer 6A send some corticocortical, but not corticopulvinar, projections. Although the Nurr1(+)/CTGF(-) neurons were restricted to lateral regions in the mouse cortex, they were present throughout the monkey cortex. Thus, an architectonic heterogeneity across areas and species was revealed for the neuronal subpopulations with distinct gene expression profiles.
To study the molecular mechanism how cortical areas are specialized in adult primates, we searched for area-specific genes in macaque monkeys and found striking enrichment of serotonin (5-hydroxytryptamine, 5-HT) 1B receptor mRNA, and to a lesser extent, of 5-HT2A receptor mRNA, in the primary visual area (V1). In situ hybridization analyses revealed that both mRNA species were highly concentrated in the geniculorecipient layers IVA and IVC, where they were coexpressed in the same neurons. Monocular inactivation by tetrodotoxin injection resulted in a strong and rapid (<3 h) downregulation of these mRNAs, suggesting the retinal activity dependency of their expression. Consistent with the high expression level in V1, clear modulatory effects of 5-HT1B and 5-HT2A receptor agonists on the responses of V1 neurons were observed in in vivo electrophysiological experiments. The modulatory effect of the 5-HT1B agonist was dependent on the firing rate of the recorded neurons: The effect tended to be facilitative for neurons with a high firing rate, and suppressive for those with a low firing rate. The 5-HT2A agonist showed opposite effects. These results suggest that this serotonergic system controls the visual response in V1 for optimization of information processing toward the incoming visual inputs.
Measurements of midrapidity charged particle multiplicity distributions, dN ch /dη, and midrapidity transverse-energy distributions, dET /dη, are presented for a variety of collision systems and energies. Included are distributions for Au+Au collisions at For all A+A collisions down to √ s N N = 7.7 GeV, it is observed that the midrapidity data are better described by scaling withNqp than scaling with Npart. Also presented are estimates of the Bjorken energy density, εBJ, and the ratio of dET /dη to dN ch /dη, the latter of which is seen to be constant as a function of centrality for all systems.
The mammalian retina has more diversity of neurons than scientists had once believed in order to establish complicated vision processing. In the monkey retina, morphological diversity of retinal ganglion cells (RGCs) besides dominant midget and parasol cells has been suggested. However, characteristic subtypes of RGCs in other species such as bistratified direction-selective ganglion cells (DSGC) have not yet been identified. Increasing interest has been shown in the common marmoset (Callithrix jacchus) monkey as a “super-model” of neuroscientific research. Here, we established organotypic tissue culture of the adult marmoset monkey retina with particle-mediated gene transfer of GFP to survey the morphological diversity of RGCs. We successfully incubated adult marmoset monkey retinas for 2 to 4 days ex vivo for transient expression of GFP. We morphologically examined 121 RGCs out of more than 3240 GFP-transfected cells in 5 retinas. Among them, we identified monostratified or broadly stratified ganglion cells (midget, parasol, sparse, recursive, thorny, and broad thorny ganglion cells), and bistratified ganglion cells (recursive, large, and small bistratified ganglion cells [blue-ON/yellow-OFF-like]). By this survey, we also found a candidate for bistratified DSGC whose dendrites were well cofasciculated with ChAT-positive starburst dendrites, costratified with ON and OFF ChAT bands, and had honeycomb-shaped dendritic arbors morphologically similar to those in rabbits. Our genetic engineering method provides a new approach to future investigation for morphological and functional diversity of RGCs in the monkey retina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.