A novel type of optical frequency domain reflectometry with a measurement range much longer than the laser coherence length is proposed and experimentally demonstrated. To reduce the influence of laser phase noise, the measurement signal is compensated by using reference signals generated from a single auxiliary interferometer supported by a newly proposed compensation process. The compensation is accomplished numerically with a computer for each section of the delay fiber length in an auxiliary interferometer after only one data acquisition. By using the proposed technique, it is confirmed experimentally that the laser phase noise is well compensated even beyond the coherence length.
The measurement of the spectral broadening, or temporal coherence property of very narrow linewidth lasers is not an easy task, while such a measurement is essential in any interferometric applications of the lasers. The beat note between two assumingly identical lasers only provides the convolutional spectral profile of the two lasers, but not characterizes the single laser. The delayed self-heterodyne interferometer (DSHI) would not be effective for kHz linewidth range because the finite delay cannot realize complete de-correlation. Here, we demonstrate, for the first time to our knowledge, the complete characterization of the modulus of the degree of coherence (DOC) of kHz linewidth lasers, with a self-referenced fashion where any other reference beam is not used, accordingly, characterize the spectral profile. The method is based on speckle statistical analysis of the Rayleigh scattering in the coherent fiber reflectometry, and would be a novel strong tool to characterize very narrow linewidth lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.