Cellular dynamics is very closely related to ionic behaviors, most of which have been hardly monitored in real time, whereas semiconductor-based biosensors have the unique advantage of direct detection of ionic charges in a real-time and noninvasive manner. In this study, we monitored the invasion process of cancer cells into the vascular endothelial layer in real time by a label-free method using a field-effect transistor (FET) biosensor. Endothelial cells were cultured on the sensing surface of the FET gate, to form a basement membrane between the endothelial cells and the sensing surface. When invasive cancer cells (HeLa cells) approached the endothelial cell-coated gate FET biosensor, a change in the surface potential was clearly detected using the FET biosensor. This is because HeLa cells, which invaded the endothelial cell layer, reduced the molecular charge density in the basement membrane by decomposing it. A platform based on the cell-coated gate FET biosensor is suitable for real-time and noninvasive monitoring of cellular dynamics based on intrinsic ionic charges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.