We succeeded in the synthesis of the double-tailed boron cluster lipids 4a-c and 5a-c, which have a B12H11S moiety as a hydrophilic function, by S-alkylation of B12H11SH (BSH) with bromoacetyl and chloroacetocarbamate derivatives of diacylglycerols for a liposomal boron delivery system on neutron capture therapy. Calcein encapsulation experiments revealed that the liposomes, prepared from the boron cluster lipid 4b, DMPC, PEG-DSPE, and cholesterol, are stable at 37 degrees C in FBS solution for 24 h. [reaction: see text].
The nido-carborane lipid 2 as a double-tailed boron lipid was synthesized from heptadecanol in five steps. The lipid 2 formed stable liposomes at 25% molar ratio toward DSPC with cholesterol. Transferrin was able to be introduced on the surface of boron liposomes (Tf(+)-PEG-CL liposomes) by the coupling of transferrin to the PEG-CO(2)H moieties of Tf(-)-PEG-CL liposomes. The biodistribution of Tf(+)-PEG-CL liposomes, in which (125)I-tyraminyl inulins were encapsulated, showed that Tf(+)-PEG-CL liposomes accumulated in tumor tissues and stayed there for a sufficiently long time to increase tumor/blood concentration ratio, although Tf(-)-PEG-CL liposomes were gradually released from tumor tissues with time. A boron concentration of 22 ppm in tumor tissues was achieved by the injection of Tf(+)-PEG-CL liposomes at 7.2 mg/kg body weight boron in tumor-bearing mice. After neutron irradiation, the average survival rate of mice not treated with Tf(+)-PEG-CL liposomes was 21 days, whereas that of the treated mice was 31 days. Longer survival rates were observed in the mice treated with Tf(+)-PEG-CL liposomes; one of them even survived for 52 days after BNCT.
The nido-carborane lipid, which has a double-tailed moiety, was synthesized from heptadecanol in 5 steps. Analysis in a transmission electron microscope by negative staining with uranyl acetate showed that the lipid formed a stable vesicle in which calcein was encapsulated. The lipid was incorporated into distearoylphosphatidylcholine (DSPC) liposomes at a very high concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.