Human in vitro gametogenesis may transform reproductive medicine. Human pluripotent stem cells (hPSCs) have been induced into primordial germ cell–like cells (hPGCLCs); however, further differentiation to a mature germ cell has not been achieved. Here, we show that hPGCLCs differentiate progressively into oogonia-like cells during a long-term in vitro culture (approximately 4 months) in xenogeneic reconstituted ovaries with mouse embryonic ovarian somatic cells. The hPGCLC-derived oogonia display hallmarks of epigenetic reprogramming—genome-wide DNA demethylation, imprint erasure, and extinguishment of aberrant DNA methylation in hPSCs—and acquire an immediate precursory state for meiotic recombination. Furthermore, the inactive X chromosome shows a progressive demethylation and reactivation, albeit partially. These findings establish the germline competence of hPSCs and provide a critical step toward human in vitro gametogenesis.
Human germ cells perpetuate human genetic and epigenetic information. However, the underlying mechanism remains elusive, due to a lack of appropriate experimental systems. Here, we show that human primordial germ cell-like cells (hPGCLCs) derived from human-induced pluripotent stem cells (hiPSCs) can be propagated to at least~10 6-fold over a period of 4 months under a defined condition in vitro. During expansion, hPGCLCs maintain an early hPGC-like transcriptome and preserve their genome-wide DNA methylation profiles, most likely due to retention of maintenance DNA methyltransferase activity. These characteristics contrast starkly with those of mouse PGCLCs, which, under an analogous condition, show a limited propagation (up to~50-fold) and persist only around 1 week, yet undergo cell-autonomous genome-wide DNA demethylation. Importantly, upon aggregation culture with mouse embryonic ovarian somatic cells in xenogeneic-reconstituted ovaries, expanded hPGCLCs initiate genome-wide DNA demethylation and differentiate into oogonia/gonocyte-like cells, demonstrating their germline potential. By creating a paradigm for hPGCLC expansion, our study uncovers critical divergences in expansion potential and the mechanism for epigenetic reprogramming between the human and mouse germ cell lineage.
(Abstracted from Science 2018;362:356–360)
Studies have shown that mouse pluripotent stem cells (PSCs) can be induced into primordial germ cell–like cells (hPGCLCs), which, following transplantation under appropriate conditions, can contribute to the development of gametes capable of developing into fertile offspring. Human in vitro gametogenesis from PSCs has long-reaching implications in reproductive medicine but has not yet been achieved.
The in vitro reconstitution of human germ-cell development provides a robust framework for clarifying key underlying mechanisms. Here, we explored transcription factors (TFs) that engender the germ-cell fate in their pluripotent precursors. Unexpectedly, SOX17, TFAP2C, and BLIMP1, which act under the BMP signaling and are indispensable for human primordial germ-cell-like cell (hPGCLC) specification, failed to induce hPGCLCs. In contrast, GATA3 or GATA2, immediate BMP effectors, combined with SOX17 and TFAP2C, generated hPGCLCs. GATA3/GATA2 knockouts dose-dependently impaired BMP-induced hPGCLC specification, whereas GATA3/GATA2 expression remained unaffected in SOX17, TFAP2C, or BLIMP1 knockouts. In cynomolgus monkeys, a key model for human development, GATA3, SOX17, and TFAP2C were co-expressed exclusively in early PGCs. Crucially, the TF-induced hPGCLCs acquired a hallmark of bona fide hPGCs to undergo epigenetic reprogramming and mature into oogonia/gonocytes in xenogeneic reconstituted ovaries. By uncovering a TF circuitry driving the germ line program, our study provides a paradigm for TF-based human gametogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.