The conformation of 2,2,2-trifluoroethanol (TFE) in the 2-fluoropyridine-(TFE) m -(H 2 O) n clusters in a supersonic jet has been investigated with fluorescence-detected infrared spectroscopy and quantum chemical calculations. It is common to the observed clusters that they form chain structures containing the weak interaction of the pyridyl CH with the fluorine or oxygen atom in the terminal TFE. The detectable conformation of TFE is gauche only even in the case of the existence of the strong base such as 2-fluoropyridine. This result is explained by the change in hyperconjugation among several dominant orbitals. The preference of the terminal TFE in the mixed clusters with TFE and water solvents is observed, which is ascribed to the stronger cooperative effect of TFE than water.
The vibrational spectra of the hydrated and methanol-solvated aminopyrazine, 2-aminopyridine and 3-aminopyridine in supersonic jets have been measured in terms of IR-UV double-resonance spectroscopy. Comparing the IR spectrum of aminopyrazine with those of 2-aminopyridine and 3-aminopyridine clusters, we determine the solvation structure of aminopyrazine to be a similar cyclic structure as hydrated 2-aminopyridine clusters [Wu, et al., Phys. Chem. Chem. Phys. 2004, 6, 515]. In the case of monohydrated aminopyrazine cluster, one of the normal modes composed of the hydrogen-bonded OH and NH stretching local modes gives the anomalously weak IR intensity, which is ascribed to the cancellation of the dipole moment change between the OH and NH stretching local modes. The solvated 3-aminopyridine clusters forms the hydrogen-bond between the pyridyl nitrogen atom and the OH group, but the amino group is indirectly affected to induce slight blue shift of the NH(2) stretches. This phenomenon is explained by inductive effect where the electron withdrawing from the amino group upon the solvation results in a "quinoid-like" structure of the amino group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.