The quantum yield of graphene quantum dots was enhanced by restriction of the rotation and vibration of surface functional groups on the edges of the graphene quantum dots via esterification with benzyl alcohol; this enhancement is crucial for the widespread application of graphene quantum dots in light-harvesting devices and optoelectronics. The obtained graphene quantum dots with highly graphene-stacked structures are understood to participate in π–π interactions with adjacent aromatic rings of the benzylic ester on the edges of the graphene quantum dots, thus impeding the nonradiative recombination process in graphene quantum dots. Furthermore, the crude graphene quantum dots were in a gel-like solid form and showed white luminescence under blue light illumination. Our results show the potential for improving the photophysical properties of nanomaterials, such as the quantum yield and band-gap energy for emission, by controlling the functional groups on the surface of graphene quantum dots through an organic modification approach.
Protective-layer-coated single-walled carbon nanotubes (SWNTs) with palladium nanoparticle decoration (Pd-SiO(2)-SWNTs) were fabricated and their sensing properties for hydrogen (H(2)) were investigated. SWNTs were coated with a 3-4 nm thick SiO(2) layer by pulsed laser deposition and subsequently decorated with Pd nanoparticles by electron beam evaporation. Even though the SWNTs were completely surrounded by a protective layer, Pd-SiO(2)-SWNTs responded to H(2) down to a concentration of 1 part per million. Compared with the Pd nanoparticle-decorated SWNTs without a protective layer (Pd-SWNTs), Pd-SiO(2)-SWNTs exhibited highly stable sensor responses with variations of less than 20%; Pd-SWNTs showed a variation of 80%. The density of the Pd-SWNTs significantly decreased after the sensing test, while that of the Pd-SiO(2)-SWNTs with the netlike structure remained unchanged. The hydrogen sensing mechanism of the Pd-SiO(2)-SWNTs was attributed to the chemical gating effect on the SWNTs due to dipole layer formation by hydrogen atoms trapped at the Pd-SiO(2) interface. Moreover, the relationship between H(2) concentration and sensor response can be described by the Langmuir isotherm for dissociative adsorption.
We fabricated a highly stable and sensitive gas sensor based on single-walled carbon nanotubes (SWNTs) protected by metal-oxide coating layer. SWNTs were deliberately decorated with 2 -5 nm of oxygen-deficient SiO x and AlO x by pulsed laser deposition, followed by annealing under Ar/H 2 ambient. Surpassing the as-grown SWNTs, the metal-oxide coated SWNTs showed an excellent sensing stability with a variation of sensor response less than 7 -8%. The obtained sensitivity to NO 2 was also improved. Moreover, the relationship between NO 2 concentration and sensor response can be described by the Frumkin-Temkin isotherm.
Bent fluorine-containing D–π-A molecules showed intense photoluminescence with large Stokes shifts stem from their twisted and bent molecular geometries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.