Background:Reduced motivation is an important marker of psychiatric disorders, including depression. We describe the female encounter test, a novel method of evaluating reward-seeking behavior in mice.Methods:The test apparatus consists of three open chambers, formed with partitions that allow the animal to move freely from one chamber to another. A test male mouse is habituated in the apparatus, and subsequently a female and male mouse are introduced into a wire-mesh box in the left and right chamber, respectively. The time the test male mouse spends in the female or male area is measured for 10min.Results:All six strains of mice tested showed a significant preference for female encounters. The preference was observed in 7–30-week-old mice. The preference was blocked by castration of the resident male test mouse, and was not affected by the phase of the menstrual cycle of the female intruder. The preference was impaired in mouse models of depression, including social isolation-reared, corticosterone-treated, and lipopolysaccharide-treated mice. The impairment was alleviated by fluvoxamine in isolation-reared and lipopolysaccharide-treated mice, and it was improved by the metabotropic glutamate 2/3 receptor antagonist LY341495 in corticosterone-treated mice. Encounter with a female, but not male, mouse increased c-Fos expression in the nucleus accumbens shell of test male mice. Furthermore, both the preference and encounter-induced increases in c-Fos expression were blocked by dopamine D1 and D2 receptor antagonists.Conclusions:These findings indicate that motivation in adult male mice can be easily evaluated by quantitating female encounters.
Chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) isϪ/Ϫ mice. These results show that CRTH2 participates in LPS-induced emotional changes and activation in the PVN and CeA. Our study provides the first evidence that central CRTH2 regulates specific emotional behaviors, and that CRTH2 antagonism has potential as a therapeutic target for behavioral symptoms associated with tumors and infectious diseases.
Valproic acid (VPA) is a multi-target drug and an inhibitor of histone deacetylase (HDAC). We have previously demonstrated that prenatal exposure to VPA at embryonic day 12.5 (E12.5), but not at E14.5, causes autism-like behavioral abnormalities in male mouse offspring. We have also found that prenatal VPA exposure causes transient histone hyperacetylation in the embryonic brain, followed by decreased neuronal cell numbers in the prefrontal and somatosensory cortices after birth. In the present study, we examined whether prenatal HDAC inhibition affects neuronal maturation in primary mouse cortical neurons. Pregnant mice were injected intraperitoneally with VPA (500 mg/kg) and the more selective HDAC inhibitor trichostatin A (TSA; 500 µg/kg) at E12.5 or E14.5, and primary neuronal cultures were prepared from the cerebral cortices of their embryos. Prenatal exposure to VPA at E12.5, but not at E14.5, decreased total number, total length, and complexity of neuronal dendrites at 14 days in vitro (DIV). The effects of VPA weakened at 21 DIV. Exposure to TSA at E12.5, but not at E14.5, also delayed maturation of cortical neurons. In addition, real-time quantitative PCR revealed that the prenatal exposure to TSA decreased neuroligin-1 (Nlgn1), Shank2, and Shank3 mRNA levels and increased contactin-associated protein-like 2 mRNA level. The delay in neuronal maturation was also observed in Nlgn1-knockdown cells, which were transfected with Nlgn1 siRNA. These findings suggest that prenatal HDAC inhibition causes changes in gene expression of autism-related molecules linked to a delay of neuronal maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.