This paper examines the optimal production and hedging decisions of the competitive firm that possesses smooth ambiguity preferences and faces ambiguous price and background risk. The separation theorem holds in that the firm's optimal output level depends neither on the firm's attitude towards ambiguity nor on the incident to the underlying ambiguity. We derive necessary and sufficient conditions under which the full‐hedging theorem holds and thus options are not used. When these conditions are violated, we show that the firm optimally uses options for hedging purposes if ambiguity is introduced to the price and background risk by means of mean‐preserving spreads. We as such show that options play a role as a hedging instrument over and above that of futures.
This paper considers a portfolio allocation problem between a risky asset and an ambiguous asset, and investigates how the existence of ambiguity influences the optimal proportion invested in the two assets. By introducing the notion of ambiguity, we derive several sufficient conditions under which an investor decreases the optimal proportion invested in the ambiguous asset. Furthermore, as an application, we consider an international diversification problem, and show that the home bias puzzle is partially resolved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.