Fermi systems in the cross-over regime between weakly coupled Bardeen-Cooper-Schrieffer (BCS) and strongly coupled Bose-Einstein-condensate (BEC) limits are among the most fascinating objects to study the behavior of an assembly of strongly interacting particles. The physics of this cross-over has been of considerable interest both in the fields of condensed matter and ultracold atoms. One of the most challenging issues in this regime is the effect of large spin imbalance on a Fermi system under magnetic fields. Although several exotic physical properties have been predicted theoretically, the experimental realization of such an unusual superconducting state has not been achieved so far. Here we show that pure single crystals of superconducting FeSe offer the possibility to enter the previously unexplored realm where the three energies, Fermi energy e F , superconducting gap Δ, and Zeeman energy, become comparable. Through the superfluid response, transport, thermoelectric response, and spectroscopic-imaging scanning tunneling microscopy, we demonstrate that e F of FeSe is extremely small, with the ratio Δ=e F ∼ 1(∼ 0:3) in the electron (hole) band. Moreover, thermal-conductivity measurements give evidence of a distinct phase line below the upper critical field, where the Zeeman energy becomes comparable to e F and Δ. The observation of this field-induced phase provides insights into previously poorly understood aspects of the highly spin-polarized Fermi liquid in the BCS-BEC cross-over regime.BCS-BEC cross-over | Fermi energy | quasiparticle interference | iron-based superconductors | exotic superconducting phase S uperconductivity in most metals is well explained by the weak-coupling Bardeen-Cooper-Schrieffer (BCS) theory, where the pairing instability arises from weak attractive interactions in a degenerate fermionic system. In the opposite limit of Bose-Einstein condensate (BEC), composite bosons consisting of strongly coupled fermions condense into a coherent quantum state (1, 2). In BCS superconductors, the superconducting transition temperature is usually several orders of magnitude smaller than the Fermi temperature, T c =T F = 10 −5 -10 −4 , whereas in the BEC limit T c =T F is of the order of 10 −1 . Even in the high-T c cuprates, T c =T F is merely of the order of 10 −2 at optimal doping. Of particular interest is the BCS-BEC cross-over regime with intermediate coupling strength. In this regime the size of interacting pairs (∼ ξ), which is known as the coherence length, becomes comparable to the average distance between particles (∼ 1=k F ), i.e., k F ξ ∼ 1 (3-5), where k F is the Fermi momentum. This regime is expected to have the highest values of T c =T F = 0:1 − 0:2 and Δ=« F ∼ 0:5 ever observed in any fermionic superfluid.One intriguing issue concerns the role of spin imbalance: whether it will lead to a strong modification of the properties of the Fermi system in the cross-over regime. This problem has been of considerable interest not only in the context of superconductivity but also in ultraco...
The physics of the crossover between weak-coupling Bardeen–Cooper–Schrieffer (BCS) and strong-coupling Bose–Einstein condensate (BEC) limits gives a unified framework of quantum-bound (superfluid) states of interacting fermions. This crossover has been studied in the ultracold atomic systems, but is extremely difficult to be realized for electrons in solids. Recently, the superconducting semimetal FeSe with a transition temperature Tc=8.5 K has been found to be deep inside the BCS–BEC crossover regime. Here we report experimental signatures of preformed Cooper pairing in FeSe, whose energy scale is comparable to the Fermi energies. In stark contrast to usual superconductors, large non-linear diamagnetism by far exceeding the standard Gaussian superconducting fluctuations is observed below T*∼20 K, providing thermodynamic evidence for prevailing phase fluctuations of superconductivity. Nuclear magnetic resonance and transport data give evidence of pseudogap formation at ∼T*. The multiband superconductivity along with electron–hole compensation in FeSe may highlight a novel aspect of the BCS–BEC crossover physics.
The low-energy elementary excitations in frustrated quantum magnets have fascinated researchers for decades. In frustrated Ising magnets on a pyrochlore lattice possessing macroscopically degenerate spin-ice ground states, the excitations have been discussed in terms of classical magnetic monopoles, which do not contain quantum fluctuations. Here we report unusual behaviours of magneto-thermal conductivity in the disordered spin-liquid regime of pyrochlore Yb2Ti2O7, which hosts frustrated spin-ice correlations with large quantum fluctuations owing to pseudospin-1/2 of Yb ions. The analysis of the temperature and magnetic field dependencies shows the presence of gapped elementary excitations. We find that the gap energy is largely suppressed from that expected in classical monopoles. Moreover, these excitations propagate a long distance without being scattered, in contrast to the diffusive nature of classical monopoles. These results suggests the emergence of highly itinerant quantum magnetic monopole, which is a heavy quasiparticle that propagates coherently in three-dimensional spin liquids.
The superconducting fluctuation e ect, due to preformed Cooper pairs above the critical temperature T c , has been generally understood by the standard Gaussian fluctuation theories in most superconductors 1 . The transverse thermoelectric (Nernst) e ect is particularly sensitive to the fluctuations, and the large Nernst signal found in the pseudogap regime of the underdoped cuprates 2,3 has raised much debate. Here we report on the observation of a colossal Nernst signal due to the superconducting fluctuations in the heavy-fermion superconductor URu 2 Si 2 . The Nernst coe cient is anomalously enhanced (by a factor of ∼10 6 ) as compared with the theoretically expected value of the Gaussian fluctuations. Moreover, contrary to the conventional wisdom, the enhancement is more significant with a reduction of the impurity scattering rate. This unconventional Nernst e ect intimately reflects the highly unusual superconducting state of URu 2 Si 2 . The results invoke possible chiral or Berry-phase fluctuations associated with the broken time-reversal symmetry 4-7 of the superconducting order parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.