BackgroundThis study examines the surface activity and resistance to phospholipase degradation of a fully-synthetic lung surfactant containing a novel diether phosphonolipid (DEPN-8) plus a 34 amino acid peptide (Mini-B) related to native surfactant protein (SP)-B. Activity studies used adsorption, pulsating bubble, and captive bubble methods to assess a range of surface behaviors, supplemented by molecular studies using Fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD), and plasmon resonance. Calf lung surfactant extract (CLSE) was used as a positive control.ResultsDEPN-8+1.5% (by wt.) Mini-B was fully resistant to degradation by phospholipase A2 (PLA2) in vitro, while CLSE was severely degraded by this enzyme. Mini-B interacted with DEPN-8 at the molecular level based on FTIR spectroscopy, and had significant plasmon resonance binding affinity for DEPN-8. DEPN-8+1.5% Mini-B had greatly increased adsorption compared to DEPN-8 alone, but did not fully equal the very high adsorption of CLSE. In pulsating bubble studies at a low phospholipid concentration of 0.5 mg/ml, DEPN-8+1.5% Mini-B and CLSE both reached minimum surface tensions <1 mN/m after 10 min of cycling. DEPN-8 (2.5 mg/ml)+1.5% Mini-B and CLSE (2.5 mg/ml) also reached minimum surface tensions <1 mN/m at 10 min of pulsation in the presence of serum albumin (3 mg/ml) on the pulsating bubble. In captive bubble studies, DEPN-8+1.5% Mini-B and CLSE both generated minimum surface tensions <1 mN/m on 10 successive cycles of compression/expansion at quasi-static and dynamic rates.ConclusionsThese results show that DEPN-8 and 1.5% Mini-B form an interactive binary molecular mixture with very high surface activity and the ability to resist degradation by phospholipases in inflammatory lung injury. These characteristics are promising for the development of related fully-synthetic lipid/peptide exogenous surfactants for treating diseases of surfactant deficiency or dysfunction.
This study investigates the activity and inhibition resistance in excised rat lungs of a novel synthetic surfactant containing the phospholipase-resistant diether phosphonolipid DEPN-8 plus 1.5% bovine surfactant protein (SP)-B/C compared to calf lung surfactant extract (CLSE). DEPN-8 1 1.5% SP-B/C surpassed CLSE in normalizing surfactant-deficient pressure-volume (P-V) deflation mechanics in lavaged excised lungs in the presence of phospholipase A 2 (PLA 2 ) or C18:1 lyso-phosphatidylcholine (LPC). DEPN-8 1 1.5% SP-B/C had activity equal to CLSE in normalizing P-V mechanics in the absence of inhibitors or in the presence of serum albumin. These physiologic activity findings were directly consistent with surface activity measurements on the pulsating bubble surfactometer. In the absence of inhibitors, DEPN-8 1 1.5% SP-B/C and CLSE rapidly reached minimum surface tensions , 1 mN/m (0.5 and 2.5 mg surfactant phospholipid/ ml). DEPN-8 1 1.5% SP-B/C maintained its high surface activity in the presence of PLA 2 , while the surface activity of CLSE was significantly inhibited by exposure to this enzyme. DEPN-8 1 1.5% SP-B/C also had greater surface activity than CLSE in the presence of LPC, and the two surfactants had equivalent surface activity in the presence of albumin. DEPN-8 1 1.5% SP-B/C also had slightly greater surface activity than CLSE when exposed to peroxynitrite in pulsating bubble studies. These results support the potential of developing highly active and inhibition-resistant synthetic exogenous surfactants containing DEPN-8 1 apoprotein/peptide constituents for use in treating direct pulmonary forms of clinical acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.