Abstrak - Kinerja karyawan merupakan hal yang diperhatikan di dalam instansi. Institut Teknologi Nasional Bandung merupakan salah satu instansi dengan jumlah karyawan yang banyak, sehingga sulit dilakukan pemantauan keberadaan seluruh karyawan. Salah satu alternatif dalam mengatasi masalah tersebut adalah pembuatan sistem untuk memantau lokasi keberadaan karyawan dengan memanfaatkan smartphone untuk pengambilan titik koordinat. Pada era modern ini smartphone merupakan barang yang hampir tidak pernah ditinggalkan. Dengan memanfaatkan titik koordinat, perhitungan jarak dapat dihitung dengan menggunakan 3 metode yaitu euclidean, manhattan, dan haversine. Dari pengujian yang telah dilakukan, rata-rata waktu yang diperlukan untuk proses pengiriman koordinat dari smartphone ke database sistem adalah 0,9 detik. Selain itu, penelitian ini bertujuan untuk membandingkan ketiga metode berdasarkan keakurasian dan waktu. Perbandingan tingkat keakurasian dilakukan dengan membandingkan persentase error hasil perhitungan jarak dengan pengukuran secara manual menggunakan pita ukur. Hasil akhir dari pengujian tiga metode tersebut diperoleh bahwa metode perhitungan Manhattan membutuhkan waktu pengolahan data yang paling cepat dalam pengujian 100 data yaitu 0,00034045 detik. Metode perhitungan Haversine menghasilkan akurasi perhitungan jarak teringgi yaitu 98,66%. Dan metode perhitungan Haversine menghasilkan akurasi keputusan tertinggi dalam menentukan keputusan lokasi keberadaan karyawan yaitu 90%. Hasil penelitian ini dapat digunakan sebagai pertimbangan pemilihan metode perhitungan jarak bagi para peneliti. Abstract - Employee performance is a matter of concern within the agency. The Bandung National Institute of Technology is one institution with a large number of employees, making it difficult to monitor the whereabouts of all employees. One alternative in overcoming the problem is the creation of a system to monitor the location of employees by utilizing smartphones to capture coordinates. In this modern era smartphone is an item that is almost never left. By utilizing coordinate points, distance calculation can be calculated using 3 methods namely euclidean, manhattan, and haversine. From the tests that have been done, the average time required for the sending of coordinates from the smartphone to the system database is 0.9 seconds. In addition, this study aims to compare the three methods based on accuracy and time. Comparison of the level of accuracy is done by comparing the percentage of error calculation results with the distance measurement manually using a measuring tape. The final results of the three methods test was obtained that the Manhattan calculation method requires the fastest data processing time in testing 100 data that is 0,00034045 seconds. The Haversine calculation method produces the highest distance calculation accuracy which is 98.66%. And the Haversine calculation method produces the highest decision accuracy in determining the location of the employee's decision that is 90%. The results of this study can be used as consideration for the selection of distance calculation methods for researchers.
The Point of Sales (POS) system is a system that supports sales transactions where POS is currently evolving because it can record sales, record inventory, print invoices, calculate profits and improve services for businesspeople and entrepreneurs. InHome Café is one of the growing cafe in Subang, Bandung. Ease of access to purchase products through online services led to an increase in transactions. At InHome Café Subang, data management, data processing, and sales transaction processing used to rely on a manual system or paper-based recording, which open to risks in data management and security. Therefore, to solve the problem, a website-based Point of Sales System was developed to record sales, collect inventory, print invoices, calculate profits using the PHP programming language with the CodeIgniter framework, and MySQL. The system was developed using the Agile development system with a reasoning that a short-term system development that emphasizes client satisfaction was required. The system functionality testing resulted in a success rate of 96.15%. Keywords: agile, café, point of sales, scrum, website
Teknologi pada zaman sekarang semakin berkembang dengan pesat dalam berbagai bidang. Manfaat dari perkembangan teknologi ini tentu saja dapat membantu pekerjaan manusia di berbagai bidang. Misalkan dalam bidang perkebunan, pengembangan untuk kualitas pada buah-buahan bahkan sampai pada bidang pendidikan. Salah satunya adalah pengidentifikasian jenis buah-buahan dibutuhkan agar masyarakat umum khususnya anak-anak dapat membedakan jenis buah-buahan dengan cara melihat bentuk daun, sehingga dapat bermanfaat untuk menambah wawasan mengenai buah-buahan. Untuk orang awam pasti cukup sulit dalam mengetahui jenis buah apa dari daun tersebut. Oleh karena itu penelitian ini mengusulkan algoritma Convolution Neural Network dengan membandingkan arsitektur EfficientNet-B3 dan MobileNet-V2 dengan cara mengatur beberapa parameter pada setiap model untuk mendapatkan nilai akurasi terbaik dalam mendeteksi jenis buah-buahan menggunakan fitur daun. EfficientNet-B3 dan MobileNet-V2 merupakan model Pre-trained dari CNN yang telaj dilatih pada suatu dataset yang cukup besar yaitu ImageNet. Hasil yang dihasilkan dari penelitian ini dengan menerapkan beberapa parameter seperti penggunaan epoch, optimizer Adam, optimizer Adamax, optimizer sgd, bathsize. Untuk EfficientNet-B3 epoch 20 optimizer sgd menghasilkan akurasi 0,2370 atau 23%, sedangkan EfficientNet-B3 epoch 50 optimizer Adamax menghasilkan akurasi 0,3051 atau 30%. Selain itu penelitian pada model MobileNet-V2 epoch 20 optimizer Adam menghasilkan akurasi 0,9914 atau 99%, sedangkan MobileNet-V2 epoch 50 optimizer Adamax menghasilkan akurasi 0,9860 atau 98%. Kata kunci: Daun, Convolution Neural Network, EfficientNet-B3, MobileNet-V2
ABSTRAKPenyakit leaf blast disebabkan oleh jamur yang bernama Pyricularia Grisea yang dapat menginfeksi daun padi dan menyebabkan gejala penyakit seperti bercak yang berbentuk seperti belah ketupat yang berwarna coklat yang dapat mengakibatkan kematian pada tanaman. Tingkat penyebaran penyakit leaf blast sudah meluas hingga di Indonesia yakni pada sentra-sentra produksi padi. Penelitian dilakukan untuk mengidentifikasi Daun Padi dengan ekstraksi ciri GLCM dan klasifikasinya dengan menerapkan metode Random Forest. Jumlah data uji sebanyak 200 yang terdiri dari 100 data daun padi sehat dan 100 data daun padi berpenyakit leaf blast. Penelitian menguji keberhasilan identifikasi penyakit leaf blast dan tidak berpenyakit leaf blast. Pengujian dilakukan dengan berbagai skema yaitu 40 data uji, 80 data uji, 120 data uji, 160 data uji dan 200 data uji. Pengujian menghasilkan nilai akurasi optimal pada data uji 200 sebesar 65%, recall 65%, precision 64% dan F-measure 65% dengan rata – rata pengujian waktu klasifikasi Random Forest sebesar 0.3522s.Kata kunci: Leaf blast, Random Forest, Padi, GLCM ABSTRACTLeaf blast is a disease caused by a fungus called Pyricularia Grisea which can infect rice leaves and cause disease symptoms such as brown rhombus-shaped spots that can cause plant death. The level of spread of leaf blast disease has spread to Indonesia, namely in rice production centers. The research was conducted to identify Rice Leaf with GLCM feature extraction and classification by applying the Random Forest method. The number of test data was 200 consisting of 100 data of healthy rice leaves and 100 data of rice leaves with leaf blast disease. The study tested the success of identification of leaf blast disease and not leaf blast disease. The tests were carried out with various schemes, namely 40 test data, 80 test data, 120 test data, 160 test data and 200 test data. The test resulted in the optimal accuracy value on the 200 test data of 65%, recall 65%, precision 64% and F-measure 65% with an average testing time of Random Forest classification of 0.3522sKeywords: Leaf blast, Random Forest, Gray-level Cooncurrence Matrix, GLCM
One factor of increased violations on the highway is a violation of traffic signs, because the signs are not visible to the driver. In addition to this the conditions on road signs attached to the road have shortcomings such as twisting signs, imperfect beacons and non-standard beacons. So to be able to reduce the violation of traffic signs required a system that can recognize traffic. To be able to recognize traffic signs can be done visually and must be fast in recognizing. The image to be recognized can use the camera to retrieve information from signposts then the image is extracted with features of Speeded Up Robust Features (SURF) algorithm consisting of three stages: interest point detection, scale space, feature description and feature matching so that the system can recognize traffic signs. The research that has been done has resulted that the SURF algorithm in recognizing traffic signs is about 83,33% accurate to be the algorithm of introduction of traffic signs with the need to be fast and accurate. In addition, this algorithm is invariant to scale and invariant to rotation, so that the difference of slope and scale difference can still be recognized by using SURF algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.