Singlet fission is a spin-allowed energy conversion process whereby a singlet excitation splits into two spin-correlated triplet excitations residing on adjacent molecules and has a potential to dramatically increase the efficiency of organic photovoltaics. Recent time-resolved nonlinear spectra of pentacene derivatives have shown the importance of high frequency vibrational modes in efficient fission. In this work, we explore impacts of vibration-induced fluctuations on fission dynamics through quantum dynamics calculations with parameters from fitting measured linear and nonlinear spectra. We demonstrate that fission dynamics strongly depends on the frequency of the intramolecular vibrational mode. Furthermore, we examine the effect of two vibrational modes on fission dynamics. Inclusion of a second vibrational mode creates an additional fission channel even when its Huang-Rhys factor is relatively small. Addition of more vibrational modes may not enhance the fission per se, but can dramatically affect the interplay between fission dynamics and the dominant vibrational mode.
The Dirac-Frenkel time-dependent variational approach with Davydov Ansätze is a sophisticated, yet efficient technique to obtain an accurate solution to many-body Schrödinger equations for energy and charge transfer dynamics in molecular aggregates and light-harvesting complexes. We extend this variational approach to finite temperatures dynamics of the spin-boson model by adopting a Monte Carlo importance sampling method. In order to demonstrate the applicability of this approach, we compare real-time quantum dynamics of the spin-boson model calculated with that from numerically exact iterative quasiadiabatic propagator path integral (QUAPI) technique. The comparison shows that our variational approach with the single Davydov Ansätze is in excellent agreement with the QUAPI method at high temperatures, while the two differ at low temperatures. Accuracy in dynamics calculations employing a multitude of Davydov trial states is found to improve substantially over the single Davydov Ansatz, especially at low temperatures. At a moderate computational cost, our variational approach with the multiple Davydov Ansatz is shown to provide accurate spin-boson dynamics over a wide range of temperatures and bath spectral densities.
Intramolecular singlet fission (iSF) materials provide remarkable advantages in terms of tunable electronic structures, and quantum chemistry studies have indicated strong electronic coupling modulation by high frequency phonon modes. In this work, we formulate a microscopic model of iSF with simultaneous diagonal and off-diagonal coupling to high-frequency modes. A non-perturbative treatment, the Dirac-Frenkel time-dependent variational approach is adopted using the multiple Davydov trial states. It is shown that both diagonal and off-diagonal coupling can aid efficient singlet fission if excitonic coupling is weak, and fission is only facilitated by diagonal coupling if excitonic coupling is strong. In the presence of off-diagonal coupling, it is found that high frequency modes create additional fission channels for rapid iSF. Results presented here may help provide guiding principles for design of efficient singlet fission materials by directly tuning singlet-triplet interstate coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.