Animals often show left-right (LR) asymmetry in their body structures. In some vertebrates, the mechanisms underlying LR symmetry breaking and the subsequent signals responsible for LR asymmetric development are well understood. However, in invertebrates, the molecular bases of these processes are largely unknown. Therefore, we have been studying the genetic pathway of LR asymmetric development in Drosophila. The embryonic gut is the first organ that shows directional LR asymmetry during Drosophila development. We performed a genetic screen to identify mutations affecting LR asymmetric development of the embryonic gut. From this screen, we isolated pebble (pbl), which encodes a homolog of a mammalian RhoGEF, Ect2. The laterality of the hindgut was randomized in embryos homozygous for a null mutant of pbl. Pbl is a multi-functional protein required for cytokinesis and the epithelial-to-mesenchymal transition in Drosophila. Consistent with Pbl's role in cytokinesis, we found reduced numbers of cells in the hindgut epithelium in pbl homozygous embryos. The specific expression of pbl in the hindgut epithelium, but not in other tissues, rescued the LR defects and reduced cell number in embryonic pbl homozygotes. Embryos homozygous for string (stg), a mutant that reduces cell number through a different mechanism, also showed LR defects of the hindgut. However, the reduction in cell number in the pbl mutants was not accompanied by defects in the specification of hindgut epithelial tissues or their integrity. Based on these results, we speculate that the reduction in cell number may be one reason for the LR asymmetry defect of the pbl hindgut, although we cannot exclude contributions from other functions of Pbl, including regulation of the actin cytoskeleton through its RhoGEF activity.
The very early nucleation stage of a transition metal dichalcogenide (TMD) was directly observed with in-situ monitoring of chemical vapor deposition and automated image analysis. Unique nucleation dynamics, such as very large critical nuclei and slow to rapid growth transitions, were observed during the vapor–liquid–solid (VLS) growth of monolayer tungsten disulfide (WS2). This can be explained by two-step nucleation, also known as non-classical nucleation, in which metastable clusters are formed through the aggregation of droplets. Subsequently, nucleation of solid WS2 takes place inside the metastable cluster. Furthermore, the detailed nucleation dynamics was systematically investigated from a thermodynamic point of view, revealing that the incubation time of metastable cluster formation follows the traditional time–temperature transformation diagram. Quantitative phase field simulation, combined with Bayesian inference, was conducted to extract quantitative information on the growth dynamics and crystal anisotropy from in-situ images. A clear transition in growth dynamics and crystal anisotropy between the slow and rapid growth phases was quantitatively verified. This observation supports the existence of two-step nucleation in the VLS growth of WS2. Such detailed understanding of TMD nucleation dynamics can be useful for achieving perfect structure control of TMDs.
Rabies remains a public health problem in the Philippines despite the widespread provision of rabies vaccines and rabies immunoglobulin (RIG) as post-exposure prophylaxis (PEP). Detailed descriptions of recent human rabies cases in the Philippines are scarce. This study aimed to describe the clinical, epidemiological, and spatial features of human rabies cases between January 1, 2006, and December 31, 2015. We conducted a retrospective hospital-based case record review of all patients admitted to one referral hospital in Manila who received a clinical diagnosis of rabies. During the 10-year study period there were 575 patients (average 57.5 cases per year, range 57 to 119) with a final diagnosis of rabies. Most patients were male (n = 404, 70.3%) and aged ≥ 20 years (n = 433, 75.3%). Patients mostly came from the National Capital Region (n = 160, 28.0%) and the adjacent Regions III (n = 197, 34.4%) and IV-A (n = 168, 29.4%). Case mapping and heatmaps showed that human rabies cases were continuously observed in similar areas throughout the study period. Most patients had hydrophobia (n = 444, 95.5%) and/or aerophobia (n = 432, 93.3%). The leading causative animals were dogs (n = 421, 96.3%) and cats (n = 16, 3.7%). Among 437 patients with animal exposure history, only 42 (9.6%) had been administered at least one rabies vaccine. Two patients (0.5%), young children bitten on their face, had received and a full course of rabies vaccine. Human rabies patients were continuously admitted to the hospital, with no notable decline over the study period. The geographical area in which human rabies cases commonly occurred also did not change. Few patients received PEP and there were two suspected cases of PEP failure. The retrospective design of this study was a limitation; thus, prospective studies are required.
Herein, we developed a near-invisible solar cell through a precise control of the contact barrier between an indium tin oxide (ITO) electrode and a monolayer tungsten disulfide (WS2), grown by chemical vapor deposition (CVD). The contact barrier between WS2 and ITO was controlled by coating various thin metals on top of ITO (Mx/ITO) and inserting a thin layer of WO3 between Mx/ITO and the monolayer WS2, which resulted in a drastic increase in the Schottky barrier height (up to 220 meV); this could increase the efficiency of the charge carrier separation in our Schottky-type solar cell. The power conversion efficiency (PCE) of the solar cell with the optimized electrode (WO3/Mx/ITO) was more than 1000 times that of a device using a normal ITO electrode. Large-scale fabrication of the solar cell was also investigated, which revealed that a simple size expansion with large WS2 crystals and parallel long electrodes could not improve the total power (PT) obtained from the complete device even with an increase in the device area; this can be explained by the percolation theory. This problem was addressed by reducing the aspect ratio (width/channel length) of the unit device structure to a value lower than a critical threshold. By repeating the experiments on this optimized unit device with an appropriate number of series and parallel connections, PT could be increased up to 420 pW from a 1-cm2 solar cell with a very high value (79%) of average visible transmission (AVT).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.