For a low-carbon society, it is necessary to extract hydrogen for fuel cells from biogas rather than from fossil fuels. However, impurities contained in the biogas affect the fuel cell; hence, there is a need for system and operation methods to remove these impurities. In this study, to develop a fuel cell system for the effective utilization of biogas-derived hydrogen, the compositional change and concentration of impurities in the hydrogen recirculation system under actual operation were evaluated using process simulation. Then, the mitigation operation for performance degradation using simple purification methods was evaluated on the proton exchange membrane fuel cells (PEMFC) stack. In the process simulation of the hydrogen recirculation system, including the PEMFC stack, the concentration of impurities remained at a level that did not pose a problem to the performance. In the constant voltage test for a simulated gas supply of biogas-derived hydrogen, the conditions for applying the methanation reforming and air bleeding methods were analyzed. As a result, methanation reforming is more suitable for supplying biogas-containing CO to the PEMFC stack for continuous operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.