Induced pluripotent stem (iPS) cells, which are a type of pluripotent stem cell generated from reprogrammed somatic cells, are expected to have potential for patient-oriented disease investigation, drug screening, toxicity tests, and transplantation therapies. Here, we demonstrated that murine iPS cells have the potential to develop in vitro into skeletal muscle stem/progenitor cells, which are almost equivalent to murine embryonic stem cells. Cells with strong in vitro myogenic potential effectively were enriched by fluorescence-activated cell sorting using the anti-satellite cell antibody SM/C-2.6. Furthermore, on transplantation into mdx mice, SM/C-2.6(+) cells exerted sustained myogenic lineage differentiation in injured muscles, while providing long-lived muscle stem cell support. Our data suggest that iPS cells have the potential to be used in clinical treatment of muscular dystrophies.
Satellite cells are myogenic stem cells responsible for the postnatal regeneration of skeletal muscle. Here we report the successful in vitro induction of Pax7-positive satellite-like cells from mouse embryonic stem (mES) cells. Embryoid bodies were generated from mES cells and cultured on Matrigel-coated dishes with Dulbecco's modified Eagle medium containing fetal bovine serum and horse serum. Pax7-positive satellite-like cells were enriched by fluorescence-activated cell sorting using a novel anti-satellite cell antibody, SM/C-2.6. SM/C-2.6-positive cells efficiently differentiate into skeletal muscle fibers both in vitro and in vivo. Furthermore, the cells demonstrate satellite cell characteristics such as extensive self-renewal capacity in subsequent muscle injury model, long-term engraftment up to 24 wk, and the ability to be secondarily transplanted with remarkably high engraftment efficiency compared to myoblast transplantation. This is the first report of transplantable, functional satellite-like cells derived from mES cells and will provide a foundation for new therapies for degenerative muscle disorders.
Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are promising sources for the cell therapy of muscle diseases and can serve as powerful experimental tools for skeletal muscle research, provided an effective method to induce skeletal muscle cells is established. However, the current methods for myogenic differentiation from human ES cells are still inefficient for clinical use, while myogenic differentiation from human iPS cells remains to be accomplished. Here, we aimed to establish a practical differentiation method to induce skeletal myogenesis from both human ES and iPS cells. To accomplish this goal, we developed a novel stepwise culture method for the selective expansion of mesenchymal cells from cell aggregations called embryoid bodies. These mesenchymal cells, which were obtained by dissociation and re-cultivation of embryoid bodies, uniformly expressed CD56 and the mesenchymal markers CD73, CD105, CD166, and CD29, and finally differentiated into mature myotubes in vitro. Furthermore, these myogenic mesenchymal cells exhibited stable long-term engraftment in injured muscles of immunodeficient mice in vivo and were reactivated upon subsequent muscle damage, increasing in number to reconstruct damaged muscles. Our simple differentiation system facilitates further utilization of ES and iPS cells in both developmental and pathological muscle research and in serving as a practical donor source for cell therapy of muscle diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.