Large π-conjugated compounds are promising building blocks for organic thin-film electronics such as organic light-emitting diodes, organic field-effect transistors, and organic photovoltaics. Utilization of porphyrins and phthalocyanines for this purpose is highly fascinating because of their excellent electric, photophysical, and electrochemical properties as well as intense self-assembling abilities arising from π-π stacking interactions. This paper focuses on fundamental aspects of self-assembled structures that have been obtained from porphyrin and phthalocyanine building blocks and more complex composites for photoinduced charge separation and charge transport toward the potential applications to organic thin-film electronics.
The effects of fullerene bisadduct regioisomers on solar cell performance have been examined for the first time and the two substituent positions on C(60) have been found to have a large impact on the solar cell performance.
The thermal reaction of La@C(82)(C(2v)) with 3-triphenylmethyl-5-oxazolidinone (1) in toluene affords benzyl monoadducts La@C(82)(C(2v))(CH(2)C(6)H(5)) (2a-2d). The same monoadducts are also obtained by the photoirradiation of La@C(82)(C(2v)) in toluene without the existence of 1. These reactions are applicable to paramagnetic metallofullerenes, such as La@C(82)(C(s)) and Ce@C(82)(C(2v)). The photoirradiation of La@C(82)(C(2v)) in 1,2-dichlorobenzene in the presence of alpha,alpha,2,4-tetrachlorotoluene also affords the monoadducts La@C(82)(C(2v))(CHClC(6)H(3)Cl(2)) (3a-3d). The monoadducts are fully characterized by spectroscopic analyses. Single-crystal X-ray structure analysis for 3d reveals the unique structure. Theoretical calculations show that the cage carbons having high spin densities are selectively attacked by radical species to form the monoadducts linked by a carbon-carbon single bond. The thermal reaction of La@C(82)(C(2v)) with 1 in benzene affords metallofulleropyrrolidine La@C(82)(C(2v))(C(2)H(4)NCPh(3)) (5), unlike the reaction in toluene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.