Accurate measurement of shear stress on a solid surface is a crucial but challenging task in fluid mechanics. Different sensors are usually used for different experimental settings: water channel, wind tunnel, towing tank, watercraft, aircraft, etc. This paper presents a direct shear sensor designed to work for varying test objects and flow conditions. Designed to compare two different sample surfaces, the shear sensor is comprised of two floating elements, whose displacement is proportional to the shear stress they experience, and two optical encoders, which measure the displacements precisely, right under the floating elements. The main plate includes two identical sets of floating elements and flexure beams machined monolithically from a thick piece of metal, allowing displacements in only one in-plane direction. The sideby-side arrangement allows the two floating elements to experience essentially the same flow conditions, regardless of test condition, enabling the comparative sensing. The method of machining these folded-beam flexures, whose width is on the scale of micrometers, while thickness and length are in millimeters and centimeters, respectively, is presented. The main plate is designed with the help of finite element analysis to ensure dynamic response of the floating elements is appropriate for target flow conditions. The utility of the shear sensor is verified in three different flow settings, i.e., water tunnel, boat in open water, and wind tunnel. A miniature underwater camera system is also developed to observe the sample surfaces during testing on a moving object, such as a boat.
Previous studies have revealed perceptual narrowing for the own-race-face in face discrimination, but this phenomenon is poorly understood in face and voice integration. We focused on infants' brain responses to the McGurk effect to examine whether the other-race effect occurs in the activation patterns. In Experiment 1, we conducted fNIRS measurements to find the presence of a mapping of the McGurk effect in Japanese 8to 9-month-old infants and to examine the difference between the activation patterns in response to own-race-face and other-race-face stimuli. We used two race-face conditions, own-race-face (East Asian) and other-race-face (Caucasian), each of which contained audiovisual-matched and McGurk-type stimuli. While the infants (N = 34) were observing each speech stimulus for each race, we measured cerebral hemoglobin concentrations in bilateral temporal brain regions. The results showed that in the own-race-face condition, audiovisual-matched stimuli induced the activation of the left temporal region, and the McGurk stimuli induced the activation of the bilateral temporal regions. No significant activations were found in the other-race-face condition. These results mean that the McGurk effect occurred only in the own-race-face condition. In Experiment 2, we used a familiarization/novelty preference procedure to confirm that the infants (N = 28) could perceive the McGurk effect in the own-race-face condition but not that of the other-race-face. The behavioral data supported the results of the fNIRS data, implying the presence of narrowing for the own-race face in the McGurk effect. These results suggest that narrowing of the McGurk effect may be involved in the development of relatively high-order processing, such as face-to-face communication with people surrounding the infant. We discuss the hypothesis that perceptual narrowing is a modality-general, pan-sensory process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.