A stereodivergent strategy for the synthesis of skipped dienes is developed. The method consists of hydroboration of allenes and Migita-Kosugi-Stille coupling, which allows for access to all four possible stereoisomers of the skipped dienes. The hydroboration is especially useful for providing both E-allylic and Z-allylic alcohols from the same allene by simply changing the organoborane reagent. The strategy was successfully applied to a unified total synthesis of the madangamine alkaloids via a common ABCE-tetracyclic intermediate with a (Z,Z)-skipped diene. The late-stage variation of the D-ring enabled the supply of synthetic madangamines A, C, and E for the first time.
While the synthesis of amide bonds is now one of the most reliable organic reactions, functionalization of amide carbonyl groups has been a long-standing issue due to their high stability. As an ongoing program aimed at practical transformation of amides, we developed a direct nucleophilic addition to N-alkoxyamides to access multisubstituted amines. The reaction enabled installation of two different functional groups to amide carbonyl groups in one pot. The N-alkoxy group played important roles in this reaction. First, it removed the requirement for an extra preactivation step prior to nucleophilic addition to activate inert amide carbonyl groups. Second, the N-alkoxy group formed a five-membered chelated complex after the first nucleophilic addition, resulting in suppression of an extra addition of the first nucleophile. While diisobutylaluminum hydride (DIBAL-H) and organolithium reagents were suitable as the first nucleophile, allylation, cyanation, and vinylation were possible in the second addition including inter- and intramolecular reactions. The yields were generally high, even in the synthesis of sterically hindered α-trisubstituted amines. The reaction exhibited wide substrate scope, including acyclic amides, five- and six-membered lactams, and macrolactams.
The full details of a unified total synthesis of madangamine alkaloids are disclosed. Our central strategy is based on the construction of a common ABCE-tetracyclic system, followed by the late-stage installation of various D-rings. The common intermediate is assembled through N-acyliminium cyclization of a propargylsilane, and formation of the (Z,Z)-skipped diene. Stereoselective synthesis of the (Z,Z)-skipped diene is especially challenging, and is accomplished by the combination of Z-selective hydroboration of the 1,1-disubstituted allene and subsequent Migita-Kosugi-Stille coupling. Macrocyclic alkylation enables the late-stage variation of the D-rings on the common tetracyclic intermediate, resulting in the collective total syntheses of madangamines A–E. The synthetic madangamine alkaloids exhibited inhibitory activities against a variety of human cancer cell lines.
A general synthetic route toward a diazatricyclic core common to the madangamine family is described. Ring-closing metathesis and palladium-catalyzed cycloisomerization provided the cis-fused diazadecalin structure, accompanied by formation of the N-Boc-enamine, which was utilized as an N-acyliminium ion equivalent. Direct cyclization from the N-Boc-enamine was achieved through the in situ formation of an N,O-acetal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.