In addition to reflecting the degree of frailty, the CFS was a useful marker for predicting late mortality in an elderly transcatheter aortic valve replacement cohort.
Brain edema is a potentially fatal pathological state that occurs after brain injuries such as stroke and head trauma. In the edematous brain, excess accumulation of extracellular fluid results in elevation of intracranial pressure, leading to impaired nerve function. Despite the seriousness of brain edema, only symptomatic treatments to remove edema fluid are currently available. Thus, the development of novel anti-edema drugs is required. The pathogenesis of brain edema is classified as vasogenic or cytotoxic edema. Vasogenic edema is defined as extracellular accumulation of fluid resulting from disruption of the blood-brain barrier (BBB) and extravasations of serum proteins, while cytotoxic edema is characterized by cell swelling caused by intracellular accumulation of fluid. Various experimental animal models are often used to investigate mechanisms underlying brain edema. Many soluble factors and functional molecules have been confirmed to induce BBB disruption or cell swelling and drugs targeted to these factors are expected to have anti-edema effects. In this review, we discuss the mechanisms and involvement of factors that induce brain edema formation, and the possibility of anti-edema drugs targeting them.
The blood-brain barrier (BBB) is a major functional barrier in the central nervous system (CNS), and inhibits the extravasation of intravascular contents and transports various essential nutrients between the blood and the brain. After brain damage by traumatic brain injury, cerebral ischemia and several other CNS disorders, the functions of the BBB are disrupted, resulting in severe secondary damage including brain edema and inflammatory injury. Therefore, BBB protection and recovery are considered novel therapeutic strategies for reducing brain damage. Emerging evidence suggests key roles of astrocyte-derived factors in BBB disruption and recovery after brain damage. The astrocyte-derived vascular permeability factors include vascular endothelial growth factors, matrix metalloproteinases, nitric oxide, glutamate and endothelin-1, which enhance BBB permeability leading to BBB disruption. By contrast, the astrocyte-derived protective factors include angiopoietin-1, sonic hedgehog, glial-derived neurotrophic factor, retinoic acid and insulin-like growth factor-1 and apolipoprotein E which attenuate BBB permeability resulting in recovery of BBB function. In this review, the roles of these astrocyte-derived factors in BBB function are summarized, and their significance as therapeutic targets for BBB protection and recovery after brain damage are discussed.
Significant exaggeration of nonculprit lesion stenosis severity occurs at infarct angiography, which may affect revascularization decision making in an appreciable number of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.