This study was conducted to examine whether the renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy without involving the sympathetic nervous system. Sprague-Dawley rats were divided into control-innervated, control-denervated, hyperthyroid-innervated, and hyperthyroid-denervated groups using intraperitoneal injections of thyroxine and 6-hydroxydopamine. After 8 wk, the heart-to-body weight ratio increased in hyperthyroid groups (63%), and this increase was only partially inhibited by sympathetic denervation. Radioimmunoassays and reverse transcription-polymerase chain reaction revealed increased cardiac levels of renin (33%) and angiotensin II (53%) and enhanced cardiac expression of renin mRNA (225%) in the hyperthyroid groups. These increases were unaffected by sympathetic denervation or 24-h bilateral nephrectomy. In addition, losartan and nicardipine decreased systolic blood pressure to the same extent, but only losartan caused regression of thyroxine-induced cardiac hypertrophy. These results suggest that thyroid hormone activates the cardiac renin-angiotensin system without involving the sympathetic nervous system or the circulating renin-angiotensin system; the activated renin-angiotensin system contributes to cardiac hypertrophy in hyperthyroidism.
The present study was performed to examine whether renal expression of the renin gene is regulated by thyroid hormone. Thirty male Sprague-Dawley rats were divided into hypothyroid, control, and hyperthyroid groups by use of daily intraperitoneal administration of methimazole, saline vehicle, or thyroxine, respectively. Each group was further subdivided into sympathetic innervated and sympathetic denervated subgroups by use of intraperitoneal administration of saline vehicle or 6-hydroxydopamine. Plasma renin activity and renal levels of renin were measured by radioimmunoassays after 8 wk. Renal expression of renin mRNA was evaluated by a semiquantitative reverse transcriptase-polymerase chain reaction. Compared with control animals, plasma renin activity, renal level of renin, and renal expression of renin mRNA were reduced (82, 94, and 71%, respectively) in hypothyroid animals and elevated (155, 1,182, and 152%, respectively) in hyperthyroid animals. Sympathetic denervation had no independent effect on these renin values. Our results indicate that thyroid hormone stimulates renin synthesis without involving the sympathetic nervous system.
It is well known that renal hypertrophy is induced by hyperthyroidism; however, the mechanism is not fully understood. We recently reported that cardiac hypertrophy in hyperthyroidism is mediated by enhanced cardiac expression of renin mRNA. The present study addresses the hypothesis that renal hypertrophy in hyperthyroidism is mediated by amplification of renal expression of renin mRNA. Twenty Sprague-Dawley rats were divided into control (n=5) and hyperthyroid groups by daily intraperitoneal injections of saline vehicle or thyroxine. The hyperthyroid group was subdivided further into hyperthyroid-vehicle (n=5), hyperthyroid-losartan (n=5), and hyperthyroid-nicardipine (n=5) groups by daily intraperitoneal injections of saline vehicle, losartan, or nicardipine. All rats were killed at 4 weeks, and the blood and kidneys were collected. The kidney-to-body weight ratio increased in the hyperthyroid groups (+34%). Radioimmunoassays and reverse transcriptase-polymerase chain reaction revealed increased renal renin (+91%) and angiotensin II (+65%) levels and enhanced renal renin mRNA expression (+113%) in the hyperthyroid groups. Losartan and nicardipine decreased systolic blood pressure to the same extent, but only losartan caused regression of thyroxine-induced renal hypertrophy. These results suggest that thyroid hormone activates the intrarenal reninangiotensin system via enhancement of renal renin mRNA expression, which then leads to renal hypertrophy.
We have reported previously that thyroid hormone activates the circulating and tissue renin-angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin-angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin-angiotensin system in Sprague-Dawley rats was fixed by chronic angiotensin II infusion (40 ng/ min, 28 days) via mini-osmotic pumps. Daily i.p. injection of thyroxine (0·1 mg/kg per day, 28 days) was used to mimic hyperthyroidism. Serum free tri-iodothyronine, plasma renin activity, plasma angiotensin II, cardiac renin and cardiac angiotensin II were measured with RIAs. The cardiac expression of renin mRNA was evaluated by semiquantitative reverse transcriptase-polymerase chain reaction. Plasma renin activity and plasma angiotensin II were kept constant in the angiotensin II and angiotensin II+thyroxine groups (0·12 0·03 and 0·15 0·03 µg/h per liter, 126 5 and 130 5 ng/l respectively) (means ...). Despite stabilization of the circulating renin-angiotensin system, thyroid hormone induced cardiac hypertrophy (5·0 0·5 vs 3·5 0·1 mg/g) in conjunction with the increases in cardiac expression of renin mRNA, cardiac renin and cardiac angiotensin II (74 2 vs 48 2%, 6·5 0·8 vs 3·8 0·4 ng/h per g, 231 30 vs 149 2 pg/g respectively). These results indicate that the local renin-angiotensin system plays the primary role in the development of hyperthyroidism-induced cardiac hypertrophy.
The effects of thyroid hormone on renin secretion, renin content, and renin mRNA levels in juxtaglomerular (JG) cells harvested from rat kidneys were determined by radioimmunoassays and reverse transcriptase-polymerase chain reaction. Despite a lack of immediate effect, incubation with triiodothyronine dose dependently increased renin secretion during the first 6 h and elevated renin content and renin mRNA levels during the subsequent period. Simultaneous incubation with triiodothyronine and the calcium ionophore A-23187 abolished the increase in renin secretion and attenuated the increase in renin content but did not affect the increase in renin mRNA levels. During simultaneous incubation with triiodothyronine and the adenylate cyclase inhibitor SQ-22536 or membrane-soluble guanosine 3′,5′-cyclic monophosphate (cGMP), the increases in renin secretion, content, and mRNA were similar to those observed in the presence of triiodothyronine alone, except for a cGMP-induced attenuation of the increase in renin secretion. These findings suggest that thyroid hormone stimulates renin secretion by JG cells through the calcium-dependent mechanism, whereas the stimulation of renin gene expression by thyroid hormone does not involve intracellular calcium or cyclic nucleotides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.