The time at which ovarian failure (menopause) occurs in females is determined by the size of the oocyte reserve provided at birth, as well as by the rate at which this endowment is depleted throughout post-natal life. Here we show that disruption of the gene for acid sphingomyelinase in female mice suppressed the normal apoptotic deletion of fetal oocytes, leading to neonatal ovarian hyperplasia. Ex vivo, oocytes lacking the gene for acid sphingomyelinase or wild-type oocytes treated with sphingosine-1-phosphate resisted developmental apoptosis and apoptosis induced by anti-cancer therapy, confirming cell autonomy of the death defect. Moreover, radiation-induced oocyte loss in adult wild-type female mice, the event that drives premature ovarian failure and infertility in female cancer patients, was completely prevented by in vivo therapy with sphingosine-1-phosphate. Thus, the sphingomyelin pathway regulates developmental death of oocytes, and sphingosine-1-phosphate provides a new approach to preserve ovarian function in vivo.
CCR4 is now known to be selectively expressed in Th2 cells. Since the bronchial epithelium is recognized as an important source of mediators fundamental to the manifestation of respiratory allergic inflammation, we studied the expression of two functional ligands for CCR4, i.e., macrophage-derived chemokine (MDC) and thymus- and activation-regulated chemokine (TARC), in bronchial epithelial cells. The bronchial epithelium of asthmatics and normal subjects expressed TARC protein, and the asthmatics showed more intense expression than the normal subjects. On the other hand, MDC expression was only weakly detected in the asthmatics, but the intensity was not significantly different from that of normal subjects. Combination of TNF-α and IL-4 induced expression of TARC protein and mRNA in bronchial epithelial A549 cells, which was slightly up-regulated by IFN-γ. The enhancement by IFN-γ was more pronounced in bronchial epithelial BEAS-2B cells, and a maximum production occurred with combination of TNF-α, IL-4, and IFN-γ. On the other hand, MDC was essentially not expressed in any of the cultures. Furthermore, expressions of TARC protein and mRNA were almost completely inhibited by glucocorticoids. These results indicate that the airway epithelium represents an important source of TARC, which potentially plays a role via a paracrine mechanism in the development of allergic respiratory diseases. Furthermore, the beneficial effect of inhaled glucocorticoids on asthma may be at least in part due to their direct inhibitory effect on TARC generation by the bronchial epithelium.
Although the study of germ cell death is arguably still in its infancy as a field, several recent breakthroughs have provided the fodder for a story, replete with episodes of apparent mass cellular suicide if not murder, that will undoubtedly serve as a research base for many laboratories over the next several years. Death is known to strike the male and female germlines with roughly equal intensity, but the innate feature of male germ cells being self-renewing while those of the female are not places the death of oocytes in a completely different light. Indeed, the functional life span of the female gonads is defined in most species, including humans, by the size and rate of depletion of the precious endowment of oocytes enclosed within follicles in the ovaries at birth. This continuous loss of oocytes throughout life, referred to by many as the female biological clock, appears to be driven by a genetic program of cell death that is composed of players and pathways conserved from worms to humans. It is on this genetic pathway, and the role of its constituent molecules in regulating female germ cell fate, that this review will focus. Emphasis will be placed on those studies using genetic-null or transgenic models to explore the functional requirement of proteins, such as Bcl-2 family members, Apaf-1, and caspases in vertebrates to CED-9, CED-4, and CED-3 in Caenorhabditis elegans, in oocyte survival and death. Furthermore, hypotheses regarding the potential impact of translating what is now known of the oocyte death pathway into new approaches for the clinical diagnosis and management of female infertility and the menopause will be offered as a means to stimulate further research in this new and exciting field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.