We performed molecular dynamics (MD) simulation that includes multidisciplinary characteristics from synthesis to mechanical properties of epoxy resin. First, to reproduce the actual chemical reaction between matrix and curing agents, we conducted curing simulation wherein the activation energy and heat of formation are considered for the chemical reaction. Subsequently, we performed MD simulations using cross-linked structure obtained from curing simulation to derive density and Young's modulus. Results indicated that crosslinked structures involving both activation energy and heat of formation could reproduce experiment results that are evaluated using differential scanning calorimetry (DSC) measurements and mechanical tests. The simulated results imply that electrostatic interaction plays an important role in Young's modulus. The density of the hydrogen bond between the oxygen of the hydroxyl group and the hydrogen atom is a key factor for the difference in Young's modulus for each base resin. These findings confirm that MD simulation is a potential alternative to experiments for the appropriate material selection of epoxy resin.
We demonstrate migration of phospholipid vesicles in response to a pH gradient. Upon simple micro-injection of a NaOH solution, the vesicles linearly moved to the tip of the micro-pipette and the migration velocity was proportional to the gradient of OH(-) concentration. Vesicle migration was characteristic of OH(-) ions and no migration was observed for monovalent salts or nonionic sucrose solutions. The migration of vesicles is quantitatively described by the surface tension gradient model where the hydrolysis of the phospholipids by NaOH solution decreases the surface tension of the vesicle. The vesicles move toward a direction where the surface energy decreases. Thus the chemical modification of lipids produces a mechanical force to drive vesicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.