PurposeTo determine the prognostic factors of epidermal growth factor receptor (EGFR) mutation status in a group of patients with nonsmall cell lung cancer (NSCLC) by analyzing their clinical and radiological features.Materials and methodsPatients with NSCLC who underwent EGFR mutation detection between 2014 and 2017 were included. Clinical features and general imaging features were collected, and radiomic features were extracted from CT data by 3D Slicer software. Prognostic factors of EGFR mutation status were selected by least absolute shrinkage and selection operator (LASSO) logistic regression analysis, and receiver operating characteristic (ROC) curves were drawn for each prediction model of EGFR mutation.ResultsA total of 118 patients were enrolled in this study. The smoking index (P = 0.028), pleural retraction (P = 0.041), and three radiomic features were significantly associated with EGFR mutation status. The areas under the ROC curve (AUCs) for prediction models of clinical features, general imaging features, and radiomic features were 0.284, 0.703, and 0.815, respectively, and the AUC for the combined prediction model of the three models was 0.894. Finally, a nomogram was established for individualized EGFR mutation prediction.ConclusionsThe combination of radiomic features with clinical features and general imaging features can enable discrimination of EGFR mutation status better than the use of any group of features alone. Our study may help develop a noninvasive biomarker to identify EGFR mutation status by using a combination of the three group features.
Patients with preinvasive or invasive pulmonary ground-glass opacity (GGO) often face different clinical treatments and prognoses. The present study aimed to identify the invasiveness of pulmonary GGO by analysing clinical and radiomic features. Patients with pulmonary GGOs who were treated between January 2014 and February 2019 were included. Clinical features were collected, while radiomic features were extracted from computed tomography records using the three-dimensional Slicer software. Predictors of GGO invasiveness were selected by least absolute shrinkage and selection operator logistic regression analysis, and receiver operating characteristic (ROC) curves were drawn for each prediction model. A total of 194 patients with pulmonary GGOs were included in the present study. The maximum diameter of the solid component, waveletHLL_ngtdm_ Coarseness (P=0.03), waveletLHH_firstorder_Maximum (P<0.01) and waveletLLH_glrlm_LongRunEmphasis (P<0.01) were significant predictors of invasive lung GGOs. The area under the ROC curve (AUC) for the prediction models of clinical features and radiomic features was 0.755 and 0.719, respectively, whereas the AUC for the combined prediction model was 0.864 (95% CI, 0.802-0.926). Finally, a nomogram was established for individualized prediction of invasiveness. The combination of radiomic and clinical features can enable the differentiation between preinvasive and invasive GGOs. The present results can provide some basis for the best choice of treatment in patients with lung GGOs. Radiomics refers to extrapolation of quantitative clinical features from radiology images (17). In oncology, tumour radiomic features measured by analysing imaging data, including nodal shape and volume, as well as intensity and a series of 'texture' features, can be used to investigate the correlation among the diagnosis, prediction and prognosis of patients with cancer (18-20). The purpose of the present study was to determine the invasiveness of GGOs on the basis of the clinical and radiomic features from chest CT. Patients and methodsPatient selection and grouping. The present study considered for inclusion a total of 268 patients who underwent
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.