As a critical component, the bipolar plate appreciably affects the performance of proton exchange membrane fuel cell (PEMFC). The flow field structure on the bipolar plate is significant in transporting the internal reaction gas and excess water. In the nature, the leaf veins provide efficient branch networks to the plant, contributing to distribute the nutrients in the whole system. By bionic means, a similar branching structure can be used to design flow channels on the bipolar plates for PEMFC, which helps distribute the reactant gas evenly and manage the water better. In this paper, a three-dimensional isothermal single phase model of the bio-inspired flow channel design based on the leaf vein pattern was presented. The effect of the angle between the main channel and sub-channels on the performance of PEMFC was studied at various cases. A PEMFC of 10.24cm2 activation area was assembled and examined experimentally. The results showed that increasing the angle appropriately was beneficial to improving the uniform oxygen distribution and excess water removal. After comprehensively analyzing the electrochemical performance, species distribution, and power loss of PEMFC, the optimal angle was presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.