A magnetically separable palladium catalyst was simply synthesized through a wet impregnation incorporating palladium nanoparticles and superparamagnetic Fe3O4 nanoparticles in KBH4 solution, which is a highly efficient catalyst for the carbonylative Sonogashira coupling reaction of aryl iodides with terminal alkynes under phosphine-free conditions. This catalyst is completely magnetically recoverable due to the super paramagnetic behavior of Fe3O4 and can be reused with sustained selectivity and activity.
A discrete-element approach is employed to model the transport, collision, adhesion, and deposition of small colloidal particles in a spin coating process. The computations are used to predict particle distribution and wall adhesion during the nonevaporative phase of spin coating of a thin film, which is important for controlling the abrasiveness, opacity, conductivity, and other properties of the film, as well as for using the deposited particles for growing new materials (e.g., nanotubes). The computations examine the particle distribution and the effect of particle adhesive force on particle deposition during spin coating. Particles are observed to preferentially collect within the film ridge just behind the moving contact line. An increase in the particle adhesive force is observed to lead to enhanced deposition of particles within an inner radius of the film and increase in the aggregate size.
A computational study is reported of the instability and growth of fingers for liquid films driven over heterogeneous surfaces. Computations are performed using a variation of the precursor-film model, in which a disjoining pressure term is used to introduce variation in the static contact angle, which in turn models surface heterogeneity. The formulation is shown to yield results consistent with the Tanner–Hoffman–Voinov dynamic contact angle formula for sufficiently small values of the precursor film thickness. A modification of the disjoining pressure coefficient is introduced which yields correct variation of dynamic contact angle for finite values of the precursor film thickness. The fingering instability is examined both for cases with ordered strips of different static contact angle and for cases with random variation in static contact angle. Surface heterogeneity is characterized by strip width and amplitude of static contact angle variation for the case with streamwise strips and by correlation length and variance of the static contact angle variation from its mean value for the random distribution case.
Herein,
we report a gold-catalyzed oxidative coupling reaction
of terminal alkynes and borane adducts for the synthesis of α-boryl
carbonyl compounds, which are versatile organoboron reagents and could
undergo various synthetic transformations. This efficient, regiospecific
reaction showed good functional group tolerance and could be used
for late-stage modification of structurally complex bioactive compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.