Mice have a strong ability to eliminate renal calcium oxalate crystals, and our previous examination indicated a susceptibility in which monocyte-macrophage interaction could participate in the phenomenon. To clarify the macrophage-related factors playing roles in the prevention of crystal formation in mouse kidneys, morphologic and expression studies based on microarray pathway analysis were performed. Eight-week-old male C57BL/6N mice were administered 80 mg/kg of glyoxylate by daily intraabdominal injection for 15 days, and the kidneys were extracted every 3 days for DNA microarray analysis. Based on the raw data of microarray analysis, pathway analyses of inflammatory response demonstrated macrophage activation through the increased expression of chemokine (C-X-C) ligand 1, fibronectin 1, and major histocompatability (MHC) class II. Association analysis of related gene expression values by quantitative reverse transcription polymerase chain reaction (RT-PCR) indicated the high association of chemokine (C-C) ligand 2, CD44, colony-stimulating factor 1, fibronectin 1, matrix gla protein, secreted phosphoprotein 1, and transforming growth factor b1 (TGF-b1) with the amount of both renal crystals and F4/80, a macrophage marker. Immunohistochemically, interstitial macrophages increased during the experimental course, and CD44 and MHC class II were upregulated around crystal-formation sites. Ultrastructural observation of renal macrophages by transmission electron microscopy indicated interstitial macrophage migration with the phagocytosis of crystals. In conclusion, increased expression of inflammation-related genes of renal tubular cells induced by crystal formation and deposition could induce monocyte-macrophage migration and phagocytosis via the interaction of CD44 with osteopontin and fibronectin. Such crystalremoving ability of macrophages through phagocytosis and digestion might become a new target for the prevention of stone formation. ß
We previously established a mouse kidney stone formation model and showed that mice have a higher tolerance to stone formation than rats. Furthermore, we showed that the generated calcium oxalate crystal deposits could be eliminated after several days. This study investigated the transcriptome of stone formation and elimination in the mouse kidney based on gene selection using a microarray technique. Eightweek-old male C57BL/6N mice were administered 80 mg/kg glyoxylate for 15 days, and kidney calcium oxalate crystal depositions had increased by day 6; thereafter, depositions decreased gradually and had almost disappeared by day 15. On microarray analysis, mRNA expression in the crystal-formed kidneys showed the significant expression of 18,064 genes. Thirty-one, 21, and 25 genes showed at least a 2-fold increased expression during the experimental course (days 3-15), stone formation phase-specific (days 3-6), and stone elimination phase-specific (days 9-15) stages, respectively. Among these genes, those related to chemotaxis and monocyte/macrophage activation were identified. Gene ontology analysis to identify overexpressed genes highlighted categories related to inflammation, immune reactions and the complement activation pathway. Quantitative PCR of 17 previously reported stone-related genes with a significant expression on microarray analysis showed significantly increased chemokines, stone matrix proteins, and their receptors; the significant decrease of several types of transporters and superoxide dismutase; and the persistently high expression of Tamm-Horsfall protein throughout the experiment. In conclusion, inflammation and immune reactivity through macrophage migration are involved in stone formation and elimination in mouse kidneys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.